Electronic Supporting Information

Cluster transformation of $[Cu_3(\mu_3-H)(\mu_3-BH_4)((PPh_2)_2NH)_3](BF_4)$ to $[Cu_3(\mu_3-H)(\mu_2,\mu_1-S_2CH)((PPh_2)_2NH)_3](BF_4)$ via reaction with CS₂. X-ray structural characterisation and reactivity of cationic clusters explored by multistage mass spectrometry and computational studies.

Howard Z. Ma, ^a Jiaye Li, ^a Allan J. Canty, *^b and Richard A. J. O'Hair*^a

^a School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010 (Australia). Fax: (+) 61 3 9347 8124; E-mail: rohair@unimelb.edu.au

^b School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia. E-mail: allan.canty@utas.edu.au

Figure S1: ORTEP-3 representation of the cluster $[Cu_4(L^{Ph}-H+2S)_3](BF_4)$ (**3.BF**₄). Displacement ellipsoids are set at the 30% probability level.

Table S1: Crystal data and structure refinement for cluster 3.BF₄

Identification code	LiJ170519
Empirical formula	$C_{4.41}H_{4.09}B_{0.06}Cl_{0.45}Cu_{0.23}F_{0.23}N_{0.17}P_{0.35}S_{0.35}$
Formula weight	117.18
Temperature/K	130.00(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	14.6628(5)
b/Å	18.9702(14)
c/Å	30.924(3)
a/°	90
β/°	90
γ/°	90
Volume/Å ³	8601.7(11)
Ζ	69
$\rho_{calc}g/cm^3$	1.561
μ/mm^{-1}	6.186
F(000)	4092.0
Crystal size/mm ³	0.2 imes 0.2 imes 0.1
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/	^o 7.376 to 154.066
Index ranges	$-17 \le h \le 6, -19 \le k \le 22, -38 \le l \le 24$

 Reflections collected
 26830

 Independent reflections
 11696 [$R_{int} = 0.0290$, $R_{sigma} = 0.0390$]

 Data/restraints/parameters
 11696/0/890

 Goodness-of-fit on F²
 1.087

 Final R indexes [I>=2 σ (I)]
 R₁ = 0.0587, wR₂ = 0.1536

 Final R indexes [all data]
 R₁ = 0.0675, wR₂ = 0.1613

 Largest diff. peak/hole / e Å⁻³ 1.32/-0.91

Table S2: Bond distances of X-ray crystallography for cluster 3.BF₄.

Cu1	Cu2	2.8735(11)	C21	C22	1.3900
Cu1	Cu3	2.7763(12)	C21	C20	1.3900
Cul	Cu4	2.7331(13)	C22	C23	1.3900
Cul	S1	2.2506(15)	C23	C24	1.3900
Cul	S5	2.2673(16)	C24	C19	1.3900
Cul	S3	2.2633(14)	C19	C20	1.3900
Cu2	Cu3	2.8317(10)	C68	C69	1.3900
Cu2	Cu4	2.7840(11)	C68	C67	1.3900
Cu2	S4	2.2491(16)	C69	C70	1.3900
Cu2	S3	2.2665(17)	C70	C71	1.3900
Cu2	S7	2.2656(15)	C71	C72	1.3900
Cu3	Cu4	2.7958(11)	C72	C67	1.3900
Cu3	S1	2.2624(16)	C38	C39	1.3900
Cu3	S6	2.2597(16)	C38	C37	1.3900
Cu3	S7	2.2546(14)	C39	C40	1.3900
Cu4	S4	2.2679(13)	C40	C41	1.3900
Cu4	S5	2.2830(15)	C41	C42	1.3900
Cu4	S6	2.2663(14)	C42	C37	1.3900
S4	P5	2.0485(19)	C46	C47	1.3900
P5	N2	1.580(5)	C46	C45	1.3900
P5	C67	1.822(3)	C47	C48	1.3900
P5	C37	1.809(2)	C48	C43	1.3900
S 1	P3	2.0475(18)	C43	C44	1.3900
P6	S3	2.0548(18)	C44	C45	1.3900
P6	N2	1.583(5)	C11	C10	1.3900
P6	C19	1.801(3)	C11	C12	1.3900
P6	C25	1.808(3)	C10	C9	1.3900
P2	S6	2.0507(19)	C9	C8	1.3900
P2	N1	1.599(4)	C8	C7	1.3900
P2	C55	1.796(3)	C7	C12	1.3900
P2	C49	1.815(3)	C29	C28	1.3900
S5	P4	2.0481(16)	C29	C30	1.3900
S7	P1	2.055(2)	C28	C27	1.3900
P1	C31	1.792(3)	C27	C26	1.3900
P1	N1	1.585(5)	C26	C25	1.3900
P1	C43	1.813(3)	C25	C30	1.3900
P4	N3	1.589(4)	C53	C54	1.3900
P4	C61	1.802(3)	C53	C52	1.3900

P4	C13	1.814(3)	C54	C49	1.3900
P3	N3	1.591(5)	C49	C50	1.3900
P3	C7	1.809(3)	C50	C51	1.3900
P3	C1	1.804(3)	C51	C52	1.3900
C36	C35	1.3900	C6	C5	1.3900
C36	C31	1.3900	C6	C1	1.3900
C35	C34	1.3900	C5	C4	1.3900
C34	C33	1.3900	C4	C3	1.3900
C33	C32	1.3900	C3	C2	1.3900
C32	C31	1.3900	C2	C1	1.3900
C56	C57	1.3900	Cl6	C76	1.760(8)
C56	C55	1.3900	F5	B1	1.363(10)
C57	C58	1.3900	F2	B1	1.30(3)
C58	C59	1.3900	F4	B1	1.362(13)
C59	C60	1.3900	B1	F7	1.377(19)
C60	C55	1.3900	B1	F6	1.395(15)
C62	C61	1.3900	B1	F3	1.318(19)
C62	C63	1.3900	B1	F1	1.314(19)
C61	C66	1.3900	Cl9	C77	1.734(16)
C66	C65	1.3900	Cl4	C73	1.741(10)
C65	C64	1.3900	C110	C77	1.66(3)
C64	C63	1.3900	Cl5	C73	1.760(10)
C14	C15	1.3900	C77	C18	1.788(14)
C14	C13	1.3900	Cl7	C76	1.733(9)
C15	C16	1.3900	Cl5A	C74	1.87(3)
C16	C17	1.3900	C74	Cl1	1.39(4)
C17	C18	1.3900	Cl1	C75	1.83(4)
C18	C13	1.3900	Cl3	C75	1.71(3)

Crystal Data for C_{4.405797}H_{4.094203}B_{0.057971}Cl_{0.451594}Cu_{0.231884}F_{0.231884}N_{0.173913}P_{0.347826}S_{0.347826} (M=117.18 g/mol): monoclinic, space group P2₁/c (no. 14), a = 14.6628(5) Å, b = 18.9702(14) Å, c = 30.924(3) Å, β = 90°, V = 8601.7(11) Å³, Z = 69, T = 130.00(10) K, µ(CuK α) = 6.186 mm⁻¹, *Dcalc* = 1.561 g/cm³, 26830 reflections measured (7.376° ≤ 2 Θ ≤ 154.066°), 11696 unique (R_{int} = 0.0290, R_{sigma} = 0.0390) which were used in all calculations. The final R_1 was 0.0587 (I > 2 σ (I)) and wR_2 was 0.1613 (all data).

Table S3: Crystal data and structure refinement for cluster 2a.BF₄

LiJCu3CS2_orange_20170407
$C_{76.94}H_{71.84}BCl_{3.9}Cu_3F_4N_4P_6S_2$
1718.30
130.01(10)
triclinic
P-1
14.5606(5)
15.3131(5)
18.0023(8)
79.962(3)
84.904(3)
84.146(3)
3921.5(3)

2
1.455
4.268
1756.0
0.1 imes 0.1 imes 0.1
$CuK\alpha \ (\lambda = 1.54184)$
7.058 to 154.182
$-17 \le h \le 18, -19 \le k \le 16, -22 \le l \le 22$
31081
16180 [$R_{int} = 0.0377$, $R_{sigma} = 0.0550$]
16180/0/821
1.089
$R_1 = 0.0493, wR_2 = 0.1233$
$R_1 = 0.0681, wR_2 = 0.1331$

 Table S4: Bond distances of X-ray crystallography for cluster 2a.BF₄.

Cu1	Cu2	2.6530(7)	C60C55	1.3900
Cu1	Cu3	2.7278(7)	C46C45	1.3900
Cu1	P6	2.2588(10)	C46C47	1.3900
Cu1	P1	2.2491(10)	C45C44	1.3900
Cu1	S 1	2.3568(12)	C44 C43	1.3900
Cu2	Cu3	2.5853(7)	C43 C48	1.3900
Cu2	P5	2.2542(9)	C48C47	1.3900
Cu2	P4	2.2480(10)	N4 C73	1.132(6)
Cu2	S2	2.3985(12)	C69C70	1.3900
Cu3	P3	2.2687(10)	C69C68	1.3900
Cu3	P2	2.2638(10)	C70C71	1.3900
Cu3	S2	2.4620(12)	C71 C72	1.3900
P6	N1	1.693(3)	C72C67	1.3900
P6	C1	1.8322(18)	C67C68	1.3900
P6	C37	1.829(2)	C9 C10	1.3900
P5	N1	1.676(3)	C9 C8	1.3900
P5	C55	1.841(2)	C10C11	1.3900
P5	C61	1.824(2)	C11C12	1.3900
P1	N2	1.696(3)	C12C7	1.3900
P1	C67	1.832(2)	C7 C8	1.3900
P1	C7	1.829(2)	C24 C23	1.3900
P4	N3	1.688(3)	C24 C19	1.3900
P4	C43	1.824(2)	C23 C22	1.3900
P4	C49	1.837(2)	C22C21	1.3900
P3	N3	1.683(3)	C21 C20	1.3900
P3	C31	1.832(2)	C20C19	1.3900
P3	C25	1.832(2)	C40C41	1.3900
P2	N2	1.685(3)	C40C39	1.3900
P2	C13	1.829(2)	C41 C42	1.3900
P2	C19	1.835(2)	C42C37	1.3900
S 1	C75	1.637(5)	C37C38	1.3900
S2	C75	1.706(4)	C38C39	1.3900
Cl2	C76	1.762(7)	C64C63	1.3900

1.76(3)	C64C65	1.3900
1.741(15)	C63C62	1.3900
1.349(6)	C62C61	1.3900
1.3900	C61C66	1.3900
1.3900	C66C65	1.3900
1.3900	C73C74	1.449(7)
1.3900	F97 B1	1.283(11)
1.3900	C52C51	1.3900
1.3900	C52C53	1.3900
1.492(18)	C51C50	1.3900
1.3900	C50C49	1.3900
1.3900	C49C54	1.3900
1.3900	C54C53	1.3900
1.3900	F95 B1	1.489(9)
1.3900	C27C28	1.3900
1.3900	C27C26	1.3900
1.3900	C28C29	1.3900
1.3900	C29C30	1.3900
1.3900	C30C25	1.3900
1.3900	C25C26	1.3900
1.3900	C76 Cl1	1.663(18)
1.3900	C76 Cl3	1.751(6)
1.3900	B1 F97A	1.626(15)
1.3900	B1 F95A	1.405(10)
1.3900	B1 F99A	1.243(9)
1.3900	C77 Cl6	1.739(8)
1.3900	C77 Cl4	1.726(8)
	1.76(3) 1.741(15) 1.349(6) 1.3900 1.3900 1.3900 1.3900 1.3900 1.492(18) 1.3900 1.390	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Crystal Data for C_{76.94}H_{71.845}BCl_{3.905}Cu₃F₄N₄P₆S₂ (M =1718.30 g/mol): triclinic, space group P-1 (no. 2), a = 14.5606(5) Å, b = 15.3131(5) Å, c = 18.0023(8) Å, a = 79.962(3)°, β = 84.904(3)°, γ = 84.146(3)°, V = 3921.5(3) Å³, Z = 2, T = 130.01(10) K, μ (CuK α) = 4.268 mm⁻¹, *Dcalc* = 1.455 g/cm³, 31081 reflections measured (7.058° ≤ 2 Θ ≤ 154.182°), 16180 unique (R_{int} = 0.0377, R_{sigma} = 0.0550) which were used in all calculations. The final R_1 was 0.0493 (I > 2 σ (I)) and wR_2 was 0.1331 (all data).

Table S5: Comparison of bond distances (in Å) of cluster $2a.BF_4$ with reported values in relatedtrinuclear copper clusters from previously reported X-ray crystallographic studies. $2a.BF_4$ (thiswork), $1a.BF_4^2$ ([Cu₃(μ_3 -H)(μ_3 -BH₄)((Ph₂P)₂NH)₃](BF₄)), Che²² ([Cu₃(μ_3 -H)(dcpm)₃](BF₄)₂),Norton²³ ([Cu₃(μ -H)₃(dppbz)]) and Hayton²¹ ([Cu₃(μ_3 -H)(OAc)₂(dppm)₃]).

	2a.BF ₄	1a.BF ₄	Che ²²	Norton ²³	Hayton ²¹
Cu-Cu	2.6530(7)	2.6164(5)	2.866(1)	2.564(2)	2.816(1)
	2.7278(7)	2.6706(5)	2.906(1)	2.555(1)	2.8077(9)
	2.5853(7)	2.6785(5)	2.865(1)	2.619(1)	3.114
Cu-H	1.73(4)	1.72(4)	1.62(4)	1.70(3)	1.58(4)
	1.80(5)	1.79(3)	1.63(4)	1.59(3)	1.79(4)
	1.74(4)	1.77(4)	1.74(5)	1.62(3)	1.72(3)
Cu-P	2.2588(10)	2.2624(7)	2.279(2)	2.277(1)	2.279(1)
	2.2491(10)	2.2709(6)	2.290(2)	2.277(1)	2.274(1)
	2.2542(9)	2.2815(9)	2.279(2)	2.292(1)	2.267(1)
	2.2480(10)	2.2681(7)	2.277(2)	2.293(1)	2.284(1)

2.2687(10)	2.2731(7)	2.288(2)	2.298(1)	2.284(1)
2.2638(10)	2.2525(9)	2.287(2)	2.292(2)	2.283(1)

Table S6: Comparison of key metal-sulfur bond distance (in Å), S-C-S bond angle (in °) and ¹H NMR resonance signal of the ⁻S₂CH unit (in ppm) of cluster **2a.BF**₄ with reported values in related dithioformate containing metallic clusters. **2a.BF**₄ (this work), **Adams**^{24a} ([Os₃(μ -H)(μ ₂-S₂CH)(CO)₁₀]), **Böttcher**^{24b} ([Ru₂(CO)₄(μ ₂-S₂CH)(μ -P^tBu₂)(μ -dppm)]), **Bianchini1**^{5c} ((PPh₃)₂Cu(K_2 -S₂CSCH₂SCS₂)Cu(PPh₃)₂) and **Bianchini2**^{5c} (Cu(K^2 -S₂CH)(triphos)).

	2a.BF ₄	Adams ^{24a}	Böttcher ^{24b}	Bianchini1 ^{5c}	Bianchini2 ^{5c}
M-S	2.3568(12)	2.445(7)	2.4692(1)	2.411(5)	n/a
	2.3985(12)	2.454(7)	2.4303(1)	2.479(5)	
	2.4620(12)			2.448(5)	
				2.449(5)	
S-C-S	128.7(3)	132.0(16)	129.4(3)	122.2(9)	n/a
				124.4(9)	
				113.3(9)	
				120.9(10)	
				113.7(9)	
				125.3(10)	
				113.6(10)	
⁻ S ₂ CH	9.87	n/a	10.67	n/a	11.26

Figure S2: ¹H NMR spectra of cluster **2a.BF**₄. Deuterochloroform (CDCl₃) was used as the solvent for the measurement in a 500 MHz NMR spectrometer.

Figure S3: ¹³C{¹H} NMR spectra of cluster **2a.BF**₄. Deuterochloroform (CDCl₃) was used as the solvent for the measurement in a 500 MHz NMR spectrometer.

Figure S4: ³¹P{¹H} NMR spectra of cluster **2a.BF**₄. Deuterochloroform (CDCl₃) was used as the solvent for the measurement in a 500 MHz NMR spectrometer.

Figure S5: ¹¹B{¹H} NMR spectra of cluster **2a.BF**₄. Deuterochloroform (CDCl₃) was used as the solvent for the measurement in a 500 MHz NMR spectrometer.

161.40 ppm

Figure S6: ¹⁹ $F{^1H}$ NMR spectra of cluster **2a.BF**₄. Deuterochloroform (CDCl₃) was used as the solvent for the measurement in a 500 MHz NMR spectrometer.

-150

. -155 . -160 -165

-170

-175

-180

-185

-190

-195

-200

-100

. -105 . -110 -115

-120

-125

. -130 . -135 -140

-145

Figure S7: UV/Vis absorption spectra of cluster $2a.BF_4$ dissolved in dichloromethane (CH₂Cl₂) at a concentration of 20 μ M.

Figure S8: ESI-MS of 2a.BF₄ in the positive ion mode, HRMS a) measured, b) stimulated.

Figure S9: ESI-MS of 3.BF₄ in the positive ion mode, HRMS a) measured, b) stimulated.

Figure S10: DFT calculated vibrational vectors of C-S and C-H stretches in the model system for cluster **2a.BF**₄, **2b**, whereby the phenyl rings of the dppa ligand have been replaced with methyl groups. Vectors are shown as red arrows. Vibrational frequencies are unscaled. Level of theory: M06/6-31+G(d)/SDD. Hydrogen atoms of the ligand have been removed for clarity.

Figure S11: DFT Calculated vibrational vectors of Cu-H bonds in the model system for cluster **2a.BF**₄, **2b**, whereby the phenyl rings of the dppa ligand have been replaced with methyl groups. Vectors are shown as red arrows. Vibrational frequencies are unscaled. Level of theory: M06/6-31+G(d)/SDD. Hydrogen atoms of the ligand have been removed for clarity.

TS5b-6b

7b

6b

Figure S12: DFT calculated structures illustrating key interactions and bond distances within each fragment. Hydrogens on the dmpa (L^{Me}) ligand have been removed for clarity.

Cartesian coordinates of DFT calculated structures associated with Figure 8

E(B1) = energy of optimized structure for basis set 1 (M06/6-31+G(d))E(ZPE) = zero-point energy of optimized structure for basis set 1 (M06/6-31+G(d))E(B2) = single point energy at basis set 2 (M06/def2-TZVP)

 $[Cu_3(\mu_3-H)(\mu_2,\mu_1-S_2CH)(L^{Me})_3]^+$ (2b)

Cu3S2C13P6N3H41 E(B1) = -4119.834563 Hartrees E(ZPE) = 0.536712 Hartrees E(B2) = -8449.680825 Hartrees

Cu	1.52364	0.16382	-0.28047
Cu	-0.67261	-1.35914	-0.05122
Cu	-0.94942	1.15251	-0.02565
Р	2.91730	-1.59362	-0.75776
Р	0.62253	-3.17326	0.38427
Р	2.39608	2.20977	-0.84894
Р	-2.83913	-1.83637	-0.65689
Р	-3.16666	1.17006	-0.63360
Р	-0.10804	3.19689	0.50221
S	1.81548	0.25120	2.13188
S	-1.20506	-0.18051	2.12861
Ν	2.17294	-3.08593	-0.34474
Ν	-3.73944	-0.41037	-0.97904
Ν	1.48550	3.44407	-0.07735
Н	1.86778	4.39094	-0.05364
С	-4.28755	1.75329	0.69886
С	4.47778	-1.64127	0.20852
С	-0.03789	3.70144	2.26033
С	0.02430	-4.78571	-0.25193
С	-3.24046	-2.87989	-2.10918
С	0.31772	0.02750	2.84300
С	2.46885	2.74590	-2.60182
С	4.09714	2.60212	-0.28939

С	-1.00633	4.62165	-0.22737
С	3.55683	-1.89737	-2.44870
С	0.94471	-3.59556	2.13863
С	-3.82304	-2.66956	0.64991
С	-3.80103	2.12350	-2.06441
Н	0.30945	0.01784	3.93961
Н	-4.73662	-0.51779	-1.17751
Н	2.76171	-3.92032	-0.30611
Н	-0.05699	-0.01183	-1.00197
Н	5.09500	-0.76720	-0.04051
Η	4.24963	-1.60509	1.28140
Н	5.06244	-2.54788	-0.00409
Н	4.16189	-2.81332	-2.49875
Н	2.72117	-1.97887	-3.15285
Н	4.18444	-1.04743	-2.75210
Н	0.73899	-5.59440	-0.04300
Н	-0.92908	-5.03987	0.23123
Н	-0.13405	-4.72223	-1.33485
Н	1.45025	-2.75399	2.62989
Η	-0.00950	-3.77182	2.65436
Η	1.56944	-4.49544	2.22516
Η	-3.39451	-3.65792	0.86632
Η	-3.78568	-2.07364	1.57090
Η	-4.87178	-2.80240	0.34850
Η	-2.84768	-3.89344	-1.95360
Η	-4.32667	-2.95092	-2.26226
Η	-2.77902	-2.46110	-3.01028
Η	-3.25086	1.84875	-2.97111
Η	-4.87200	1.93484	-2.22465
Η	-3.66523	3.19799	-1.88430
Η	-4.07078	2.80553	0.93117
Η	-5.34586	1.66840	0.41405
Η	-4.10947	1.16307	1.60708
Н	0.35051	4.72345	2.36869
Н	-1.04836	3.65491	2.68988
Н	0.60705	3.00921	2.81510
Н	-1.10707	4.48202	-1.31098
Η	-2.01015	4.69287	0.21354
Η	-0.48479	5.57048	-0.03672
Н	4.35965	3.65379	-0.47333
Η	4.19482	2.38936	0.78250
Н	4.81035	1.97078	-0.83706
Н	3.12387	2.07176	-3.17056
Н	1.46166	2.68757	-3.03360
Н	2.84550	3.77334	-2.70069

 $[Cu_3(\mu_3-H)(\mu_1,K_2-S_2CH)(L^{Me})_2]^+$ (4b)

Cu3S2C9P4N2H28 E(B1) = -3222.413246 Hartrees E(ZPE) = 0.366765 Hartrees E(B2) = -7552.109705 Hartrees

Cu	0.71066	0.84074	-0.73466
Cu	-1.66390	-0.46066	-0.65117
Cu	0.42444	-1.64784	-0.01869
Р	-0.28608	2.68920	0.13845
Р	-2.51917	0.87150	0.93380
Р	2.99760	0.66344	-0.90753
Р	2.33279	-1.46824	1.11372
S	-3.51873	-1.58637	-1.58785
S	-1.43959	-2.92691	0.21753
Ν	-1.52430	2.24350	1.23819
Ν	3.45853	-0.44522	0.31861
Н	4.44373	-0.50800	0.57927
С	-1.07383	3.83484	-1.05592
С	3.32440	-2.96178	1.45121
С	-2.70505	0.08513	2.56760
С	-2.07264	-2.41593	-1.33122
С	4.10681	2.07947	-0.56846
С	0.71251	3.83218	1.15872
С	-4.18109	1.56513	0.63040
С	3.70858	-0.01909	-2.44861
С	2.12613	-0.74262	2.78224
Η	1.61831	0.22725	2.69101
Н	1.49932	-1.40235	3.39680
Н	3.09390	-0.59934	3.28154
Н	4.78279	-0.21835	-2.33582
Н	3.19286	-0.95403	-2.69943
Н	3.56348	0.68653	-3.27677
Н	0.09672	4.63236	1.59244
Н	1.20630	3.28219	1.96864
Н	1.48256	4.29634	0.52909
Н	-0.31887	4.26956	-1.72384
Н	-1.79432	3.28110	-1.67141
Н	-1.59671	4.64839	-0.53452
Н	-1.90619	2.98303	1.83171

Η	-1.47900	-2.70181	-2.20647
Η	4.24451	-2.71048	1.99718
Η	2.73411	-3.65442	2.06335
Η	3.58361	-3.46520	0.51366
Η	-3.12354	0.77900	3.30907
Η	-3.37170	-0.78110	2.46212
Η	-1.72725	-0.27629	2.90841
Η	3.97543	2.84550	-1.34314
Η	3.86285	2.51982	0.40577
Η	5.16216	1.77272	-0.56722
Η	-4.18383	2.14274	-0.30188
Η	-4.89360	0.73711	0.52240
Η	-4.50779	2.20789	1.45935
Η	-0.06292	-0.53318	-1.38501

$[Cu_3(\mu_2,\mu_2-S_2CH_2)(L^{Me})_2]^+$ (5b)

Cu3S2C9P4N2H28 E(B1) = -3222.466461 Hartrees E(ZPE) = 0.372398 Hartrees E(B2) = -7552.159374 Hartrees

Cu	0.23479	0.37398	-1.28120
Cu	-1.56323	-1.30993	-0.14722
Cu	0.87185	-1.37758	0.85706
Р	-1.17066	2.08884	-0.63902
Р	-2.69360	0.13083	1.08891
Р	2.45282	0.78891	-0.99918
Р	2.01738	0.22289	1.88242
S	-0.85375	-1.29575	-2.36726
S	-0.07727	-3.12464	-0.06764
Ν	-2.04341	1.70654	0.80278
Ν	2.73814	1.17916	0.66134
Н	3.59532	1.68363	0.89659
С	-2.45051	2.47071	-1.89541
С	3.42583	-0.32656	2.90651
С	-2.63436	0.03241	2.91395
С	0.14197	-2.76070	-1.86631
С	3.05418	2.30846	-1.81958

С	-0.56316	3.76269	-0.20832
С	-4.49069	0.32015	0.79108
С	3.76509	-0.41530	-1.43124
С	1.15245	1.40666	2.97041
Н	0.26010	1.79142	2.45847
Н	0.83713	0.90044	3.89250
Н	1.81278	2.24301	3.23633
Η	4.76397	-0.01935	-1.20140
Н	3.60996	-1.34844	-0.87301
Н	3.71351	-0.65029	-2.50260
Н	-1.37533	4.41545	0.14230
Н	0.20950	3.69857	0.56785
Н	-0.12179	4.22406	-1.10116
Н	-1.98017	2.90249	-2.78880
Н	-2.94980	1.54136	-2.19955
Н	-3.19806	3.17793	-1.50924
Н	-2.58357	2.48014	1.20120
Н	-0.22985	-3.63535	-2.41227
Н	4.00043	0.53290	3.27890
Н	3.06298	-0.90128	3.76729
Н	4.08415	-0.97279	2.31350
Н	-3.10586	0.90908	3.37980
Н	-3.16166	-0.87010	3.24756
Н	-1.59158	-0.03721	3.24560
Н	3.01099	2.17534	-2.90747
Н	2.41780	3.15834	-1.54669
Н	4.09364	2.53105	-1.54046
Н	-4.67840	0.50615	-0.27281
Н	-5.01038	-0.60495	1.07105
Н	-4.90621	1.14743	1.38362
Н	1.20089	-2.62339	-2.11172

$[Cu_3(\mu_3-S)(K_2-SCH_2)(L^{Me})_2]^+$ (6b)

Cu3S2C9P4N2H28 E(B1) = -3222.441839 Hartrees E(ZPE) = 0.371907 Hartrees E(B2) = -7552.135693 Hartrees

Cu 0.45481 -0.31002 -1.36934

Cu	-1.50036	-1.46339	0.34981
Cu	1.03039	-1.33300	1.06829
Р	-1.19102	1.50065	-0.71236
Р	-2.77738	0.03809	1.33125
Р	2.51509	0.67148	-0.81127
Р	2.10532	0.26944	2.13152
S	0.53178	0.40772	-3.58426
S	0.16943	-2.50093	-0.53932
Ν	-2.05143	1.50137	0.80776
Ν	2.71940	1.19743	0.82858
Н	3.49985	1.82855	1.02212
С	-2.52266	1.75511	-1.95598
С	3.57104	-0.09857	3.15412
С	-2.69780	0.13858	3.15136
С	-0.31178	-0.99718	-3.22105
С	3.08721	2.16779	-1.69323
С	-0.46449	3.18295	-0.65382
С	-4.56887	0.21399	1.01306
С	3.89198	-0.48933	-1.13788
С	1.17781	1.47483	3.14251
Н	0.28184	1.79790	2.59366
Н	0.86655	1.01186	4.08807
Н	1.79855	2.35239	3.36873
Н	4.86634	-0.04583	-0.89124
H	3.74868	-1.41057	-0.55797
H	3.87784	-0.76128	-2.20263
H	-1.22074	3.95209	-0.44128
H	0.32489	3.23338	0.10763
H	-0.02561	3.40171	-1.63654
H	-2.07513	1.92847	-2.94374
H	-3.14667	0.85352	-2.02141
H	-3.16008	2.61140	-1.693/1
H H	-2.54088	2.36/42	1.05228
П U	-1.39/03	-0.98/30	-5.0/991
н Ц	4.08903	0.62419	J.44937 1 06185
н Н	<i>J.27192</i> <i>A</i> 26190	-0.03030	2 58833
H	-3 12149	1 08543	3 51312
Н	-3 26242	-0.69176	3 59322
Н	-1 65519	0.06044	3 48015
Н	3 16069	1 94127	-2 76414
Н	2 37975	2 99382	-1 55846
Н	4.07974	2.48065	-1.33970
Н	-4.76301	0.27111	-0.06401
Н	-5.10397	-0.65684	1.41210
Н	-4.96344	1.11794	1.49734
Н	0.12735	-1.97964	-3.40331

 $[Cu_{3}(\mu_{3}-S)(L^{Me})_{2}]^{+}(7b)$

Cu3SC8P4N2H26 E(B1) = -2785.050371 Hartrees E(ZPE) = 0.342803 Hartrees E(B2) = -7114.700105 Hartrees

Cu	0.00000	0.80140	-0.55963
Cu	-1.45286	-1.37442	-0.68788
Cu	1.45286	-1.37443	-0.68787
Р	-2.00826	1.69487	0.13668
Р	-3.08072	-1.06983	0.76131
Р	2.00827	1.69486	0.13667
Р	3.08072	-1.06983	0.76132
S	0.00000	-0.89212	-2.19531
Ν	-2.99110	0.61652	1.06716
Ν	2.99110	0.61652	1.06716
Н	3.79240	1.03962	1.54145
С	-3.06482	2.19160	-1.27645
С	4.79123	-1.33840	0.17427
С	-3.11667	-1.80831	2.42997
С	2.08555	3.18282	1.20086
С	-2.08554	3.18282	1.20088
С	-4.79124	-1.33839	0.17426
С	3.06483	2.19158	-1.27646
С	3.11666	-1.80831	2.42998
Н	2.16028	-1.63644	2.93508
Н	3.28606	-2.88948	2.35370
Н	3.92368	-1.36726	3.03067
Н	4.05965	2.51530	-0.94032
Н	3.16840	1.34443	-1.96728
Н	2.58962	3.01384	-1.82777
Η	-3.12286	3.48525	1.40333
Η	-1.57425	2.99442	2.15177
Η	-1.58226	4.01422	0.69120
Η	-2.58961	3.01385	-1.82775
Н	-3.16839	1.34445	-1.96727
Η	-4.05964	2.51532	-0.94031
Η	-3.79240	1.03962	1.54145
Η	5.52180	-0.95035	0.89754
Н	4.97490	-2.41078	0.03341
Н	4.93527	-0.83537	-0.78934
Н	-3.92369	-1.36726	3.03066

Η	-3.28607	-2.88948	2.35368
Н	-2.16029	-1.63645	2.93507
Н	1.58227	4.01423	0.69118
Н	1.57426	2.99443	2.15175
Н	3.12287	3.48525	1.40332
Н	-4.93527	-0.83536	-0.78934
Н	-4.97491	-2.41077	0.03340
Η	-5.52180	-0.95034	0.89753

$[Cu_3(\mu_2-H)(\mu_2,\mu_1-S_2CH)(L^{Me})_1]^+(8b)$

Cu3S2C5P2N1H15 E(B1) = -2325.015122 Hartrees E(ZPE) = 0.197702 Hartrees E(B2) = -6654.559511 Hartrees

Cu	-0.28934	0.55978	0.32921
Cu	0.79474	-1.04980	-1.07498
Cu	-1.51496	-1.72831	-0.26371
Р	-2.08044	1.91438	0.15246
Р	-3.49874	-0.75016	-0.20220
S	0.41794	-0.71070	2.15351
S	0.35006	-2.98470	0.05382
Ν	-3.39872	0.94261	-0.38702
Η	-4.28467	1.42521	-0.55562
С	-4.34327	-1.05006	1.38861
С	0.68925	-2.24822	1.59787
С	-2.00722	3.21627	-1.11944
С	-2.74761	2.80595	1.60214
С	-4.74113	-1.21777	-1.44555
Η	-4.36778	-1.01081	-2.45391
Η	-4.95740	-2.28960	-1.36237
Η	-5.67605	-0.66396	-1.28306
Η	-3.66769	3.34905	1.34635
Η	-2.96006	2.09752	2.41195
Η	-2.00765	3.52960	1.96699
Η	1.14816	-2.94539	2.30822
Η	-5.29510	-0.50389	1.43708
Η	-4.54118	-2.12223	1.51587
Η	-3.69782	-0.72066	2.21338
Н	-1.27617	3.97761	-0.81991

Η	-1.68485	2.78293	-2.07265
Η	-2.98396	3.70214	-1.24911
Н	0.65326	0.53182	-1.16604

 $[Cu_3(\mu_2-H)(\mu_2,K_2-S_2CH)(L^{Me})_2]^+(TS4b-5b)$

Cu3S2C9P4N2H28

E(B1) = -3222.379869 Hartrees E(ZPE) = 0.365197 Hartrees E(B2) = -7552.074888 Hartrees Imaginary frequency: -576.75

Cu	0.30186	0.77023	-0.84838
Cu	-1.53306	-0.96491	-0.16567
Cu	0.99679	-1.54839	0.59622
Р	-1.16894	2.42013	-0.31414
Р	-2.47850	0.30814	1.31762
Р	2.52942	0.76777	-1.27925
Р	2.56513	-0.28980	1.51167
S	-2.67321	-2.10095	-1.89973
S	-0.24209	-3.07842	-0.33052
Ν	-2.02211	1.95179	1.10279
Ν	3.32498	0.55248	0.22836
Н	4.30695	0.81505	0.31821
С	-2.43921	2.69042	-1.60410
С	3.95406	-1.15303	2.31773
С	-2.14977	-0.02012	3.07963
С	-0.93984	-2.08488	-1.73867
С	3.32090	2.29120	-1.90464
С	-0.66665	4.12417	0.11922
С	-4.29889	0.30489	1.21688
С	3.19438	-0.52054	-2.39080
С	2.11332	0.99235	2.73443
Н	1.33187	1.63817	2.31216
Η	1.72021	0.51851	3.64368
Η	2.98383	1.60639	3.00099
Η	4.29092	-0.48292	-2.43800
Н	2.87901	-1.50902	-2.03151
Н	2.78911	-0.37970	-3.40170

Η	-1.53201	4.74526	0.38922
Н	0.04095	4.10981	0.95627
Н	-0.17377	4.58388	-0.74652
Н	-1.98212	3.13347	-2.49866
Н	-2.87594	1.72414	-1.89144
Н	-3.23365	3.35862	-1.24392
Н	-2.61370	2.66061	1.54173
Н	-0.32010	-2.12582	-2.63964
Η	4.74434	-0.44460	2.60264
Η	3.59662	-1.65636	3.22409
Η	4.36747	-1.91037	1.64271
Η	-2.67533	0.69746	3.72377
Η	-2.48538	-1.03503	3.32712
Η	-1.07130	0.04530	3.26668
Η	2.96868	2.49445	-2.92335
Н	3.05486	3.14127	-1.26560
Η	4.41469	2.18840	-1.93532
Η	-4.60904	0.58786	0.20359
Η	-4.66533	-0.71183	1.40737
Η	-4.74765	0.99028	1.94911
Н	-0.41835	-0.73454	-1.52708

$[Cu_3(\mu_2-S)(K_2-SCH_2)(L^{Me})_2]^+$ (TS5b-6b)

Cu3S2C9P4N2H28 E(B1) = -3222.429057 Hartrees E(ZPE) = 0.371263 Hartrees E(B2) = -7552.121792 Hartrees Imaginary frequency: -170.93

Cu	0.26038	0.26279	-0.90734
Cu	-1.60045	-1.04065	0.47429
Cu	1.05622	-1.32837	1.00434
Р	-1.51394	1.71061	-0.88197
Р	-2.97766	0.45051	1.34519
Р	2.44027	0.90614	-0.56470
Р	2.45267	-0.10660	2.21181
S	0.32950	-0.20494	-3.22689
S	-0.18534	-2.41136	-0.39644

Ν	-2.48799	1.88099	0.54464
Ν	3.01970	1.02581	1.06410
Н	3.90462	1.50511	1.24150
С	-2.72087	1.45320	-2.23395
С	3.96115	-0.86363	2.90653
С	-2.89994	0.86807	3.11866
С	0.51481	-1.78600	-2.61356
С	2.83576	2.56450	-1.22246
С	-1.00889	3.44608	-1.15826
С	-4.77478	0.30089	1.05391
С	3.68224	-0.13317	-1.42007
С	1.82331	0.90968	3.59081
Н	0.98239	1.51458	3.23042
Н	1.47695	0.26852	4.41107
Н	2.60594	1.58077	3.96892
Н	4.69348	0.27951	-1.30229
Н	3.66056	-1.15100	-1.00736
Н	3.43516	-0.18463	-2.48915
Н	-1.87597	4.11090	-1.27724
Н	-0.39689	3.79703	-0.31898
Н	-0.40935	3.49215	-2.07731
Н	-2.21760	1.55047	-3.20411
Н	-3.12624	0.43425	-2.18019
Н	-3.54074	2.18221	-2.16915
Н	-3.10672	2.69452	0.59478
Н	-0.16029	-2.56093	-2.97762
Н	4.63796	-0.09673	3.30784
Н	3.69455	-1.55103	3.71856
Н	4.48284	-1.43349	2.12855
Η	-3.50680	1.75691	3.33725
Н	-3.27798	0.02830	3.71465
Н	-1.86188	1.06440	3.40800
Η	2.56956	2.58453	-2.28763
Η	2.25587	3.33214	-0.69739
Η	3.90627	2.79437	-1.12871
Н	-4.97353	0.13211	-0.01070
Н	-5.17282	-0.55303	1.61616
Η	-5.30124	1.20867	1.37948
Н	1 51006	-2 14776	-2.35050

dmpa (L)

C4P2N1H13 E(B1) = -897.3386603 Hartrees

E(ZPE) = 0.166819 Hartrees E(B2) = -897.4793544 Hartrees

Р	-1.51423	0.04189	-0.56603
Р	1.51423	0.04189	-0.56603
Ν	-0.00000	0.26967	0.23448
С	2.15873	-1.46374	0.31156
С	-2.15873	-1.46374	0.31156
С	2.52577	1.29326	0.35173
С	-2.52577	1.29326	0.35173
Н	-2.21865	2.30455	0.06121
Η	-3.58785	1.17068	0.10155
Η	-2.41293	1.19017	1.44188
Н	-0.00000	0.26137	1.25886
Н	3.20575	-1.64766	0.03495
Η	2.10125	-1.35554	1.40557
Η	1.57143	-2.34220	0.01546
Η	2.21865	2.30455	0.06121
Η	2.41293	1.19017	1.44188
Н	3.58785	1.17068	0.10155
Η	-3.20575	-1.64766	0.03495
Н	-1.57143	-2.34220	0.01546
Н	-2.10125	-1.35554	1.40557

CH_2S

SCH2 E(B1) = -437.3707119 Hartrees E(ZPE) = 0.024638 Hartrees E(B2) = -437.4122528 Hartrees

S	0.00000	0.00000	0.58684
С	-0.00000	-0.00000	-1.02655
Η	0.00000	0.92435	-1.61508
Н	-0.00000	-0.92435	-1.61508