Supporting Information for Backbone flexibility of extended metal atom chains. Ab initio molecular dynamics for $Cr_3(dpa)_4X_2$ (X = NCS⁻, CN⁻, NO₃⁻) in gas and crystalline phase.

Mariano Spivak,¹Vaida Arcisauskaite,² Xavier López,¹ and Coen de Graaf^{1,3}

¹Departament de Quimica Fisica i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, E-43007 Tarragona, Spain.

²Departmentof Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR,U.K.

³ICREA, Passeig Lluis Companys 23, 08010, Barcelona, Spain.

Table of contents:

Т

Table S1	Relevant mean distances $(d, in Å)$ and angles $(a, in degrees)$ from the molecular dynamics of	
	$\operatorname{Cr}_3(\operatorname{dpa})_4(\operatorname{CN})_2.$	

2

Table S1. Relevant mean distances (*d*, in Å) and angles (*a*, in degrees) from the molecular dynamics of $Cr_3(dpa)_4(CN)_2$. Average values are reported for the group of symmetric ($\Delta dist < 0.15$ Å) and asymmetric ($\Delta dist > 0.15$ Å) structures. X-ray values are shown. Previous DFT optimized structural parameters are shown for comparison.

	Gas phase MD		Crystal MD		X-ray ¹	Static
	Symmetri	Asymmetri	Symmetri	Asymmetri		DFT Opt ²
	c	c	c	c		
$d(Cr_1-Cr_2)$	2.314	2.275	2.358	1.928	2.370	2.370
$d(\operatorname{Cr}_2\cdots\operatorname{Cr}_3)$	2.332	2.531	2.379	2.695	2.370	2.370
$d(X-Cr_1)$	2.187	2.198	2.323	2.452	2.284	2.186
$d(X-Cr_3)$	2.176	2.135	2.201	2.299	2.284	2.186
$a(N-C-Cr_1)$	164.6	165.5	145.3	145.6	173.7	180.0
$a(N-C-Cr_3)$	164.2	164.8	139.7	147.6	173.7	180.0

- John F. Berry; F. Albert Cotton; Tongbu Lu; Carlos A. Murillo; Brian K. Roberts; Wang, X. Molecular and Electronic Structures by Design: Tuning Symmetrical and Unsymmetrical Linear Trichromium Chains. *J. Am. Chem. Soc.* 2004, *126* (22), 7082–7096.
- (2) Spivak, M.; Arcisauskaite, V.; Lopez, X.; McGrady, J. E.; de Graaf, C. A Multiconfigurational Approach to the Electronic Structure of Trichromium Extended Metal Atom Chains. *Dalt. Trans.* 2017, 46 (19), 6202–6211.