Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information

five-membered ring chelating mode

six-membered ring chelating mode

Scheme S4

Materials and Physical Measurements

Compound $[Ir(tpy)Cl_3]$ (tpy = 2,2':6',2"-terpyridine) was prepared according to the literature.^{S1} All other reagents were commercially available and used without further purification. Elemental analyses were performed on a Perkin Elmer 240C elemental analyzer. IR spectra were obtained as KBr disks on a VECTOR 22 spectrometer. ¹H NMR spectra were recorded at room temperature with a 400 MHz BRUKER spectrometer. Powder XRD patterns were recorded on a BRUKER D8 ADVANCE X-ray diffractometer. UV-vis absorption spectra were measured on a Cary 100 spectrophotometer. Luminescence spectra were measured using a Hitachi F-4600 fluorescence spectrometer. The luminescence lifetimes were measured at room temperature on a HORIBA FL-3 Spectrofluorometer with a 370 nm LED pulsed from a NanoLED resource. The photoluminescence quantum yields of Ir-O and Ir-R were measured relative method by comparison with by a а standard, а solution of quinine sulfate in 0.5 M H_2SO_4 ($\Phi = 54.6\%$, $\lambda_{ex} = 366$ nm).^{S2}

1. Synthesis of 2-naphthalen-1-yl-1 H-benzoimidazole (nbiH)

A mixture of 1-naphthaldehyde (2 mmol, 312 mg), 1,2-diaminobenzene (2 mmol, 216 mg), MgCl₂·6H₂O (0.2 mmol, 40.6 mg) and DMF (10 mL) in an open flask was stirred at 80 °C for 10 hours. The reaction was mixed with CH₃COOCH₃ (40 mL). This mixture was washed with saturated NaCl aqueous solution (25 mL*5). The CH₃COOCH₃ solution was dried with MgSO₄, filtered, and then evaporated. The residue was purified through silica column chromatography using ethyl acetatepetroleum ether (v/v = 10-20/100) solution, obtaining a white solid with a yield of 400 mg (82% based on 1-naphthaldehyde). Anal. found (calcd) for C₁₇H₁₂N₂: C, 83.64 (83.58); H, 5.13 (4.95), N, 11.65 (11.47). IR (KBr, cm⁻¹): 3047(w), 2957(w), 2858(w), 2752(w), 2656(w), 1591(w), 1533(w), 1506(w), 1448(s), 1402(s), 1362(m), 1333(w), 1281(m), 1230(w), 1140(w), 1074(w), 1038(w), 1016(w), 951(w), 805(s), 774(s), 748(s), 445(w). ¹H NMR (400 MHz, DMSO- d_6), δ (ppm): 7.26 (broad, 2H from the benzene ring of benzene-imidazole moiety), 7.57-7.71 (m, 4H), 7.77 (d, J = 8Hz, 1H) [7.57-7.79 ppm: total 5H from naphthalene ring], 8.01-8.06 (m, 2H from the benzene ring of benzene-imidazole moiety), 8.09 (d, J = 8 Hz, 1H), 9.10 (d, J = 8 Hz, 1H) [8.09-9.10 ppm: total 2H from naphthalene ring].

2. Syntheses of Ir-O and Ir-R with molecular formula [Ir(tpy)(nbi)Cl](PF₆)

A mixture of Ir(tpy)Cl₃ (0.17 mmol, 91 mg), nbiH (0.34 mmol, 85 mg) in

ethylene glycol (25 mL) was heated in an oil bath (190 °C) under argon for one day. After adding saturated KPF₆ aqueous solution (20 mL), the resultant residue was filtered, and then purified through silica column chromatography using CH₃OH-CH₂Cl₂ (v/v = 0.3/100) solution, obtaining a yellow solid of **Ir-O** with a yield of 34 mg [24% based on Ir(tpy)Cl₃] and a red solid of **Ir-R** with a yield of 62 mg [43% based on Ir(tpy)Cl₃].

It should be noted that we also carried out this reaction at 135 °C, obtaining the yellow solid of **Ir-O** with a yield of 27 mg [19% based on Ir(tpy)Cl₃] and the red solid of **Ir-R** with a yield of 68 mg [47% based on Ir(tpy)Cl₃].

For complex **Ir-O**: Anal. found (calcd) for $C_{32}H_{22}N_5F_6PClIr: C, 45.35 (45.26); H, 2.89 (2.61), N, 8.34 (8.25). IR (KBr, cm⁻¹): 3423(w), 2924(w), 1606(w), 1577(w), 1528(w), 1455(m), 1397(w), 1337(w), 1249(w), 848(s), 773(m), 558(w), 440(w). ¹H NMR (400 MHz, DMSO-$ *d* $₆), <math>\delta$ (ppm): 6.23 (d, J = 8 Hz, 1H), 7.32 (d, J = 8 Hz, 1H), 7.42-7.48 (m, 4H), 7.54 (t, 1H), 7.72 (t, 1H) [6.23-7.72 ppm: total 8H from nbiH ligand], 7.77-7.79 (m, 3H, 2H from nbiH ligand and 1H from tpy ligand), 7.93 (d, J = 8 Hz, 1H), 8.17 (2t, 2H), 8.59 (t, 1H), 8.71-8.78 (m, 3H), 8.96 and 8.98 (2d, 2H), 9.04 (d, J = 8 Hz, 1H) [7.93-9.06 ppm: total 10H from tpy ligand].

For complex **Ir-R**: Anal. found (calcd) for $C_{32}H_{22}N_5F_6PCIIr: C, 45.38 (45.26); H, 2.83 (2.61), N, 8.30 (8.25). IR (KBr, cm⁻¹): 3406(w), 3097(w), 3042(w), 1605(w), 1560(w), 1527(w), 1453(w), 1433(w), 1417(w), 1398(w), 1343(w), 1249(w), 1157(w), 1085(w), 973(w), 8520(s), 770(s), 558(w), 450(w). ¹H NMR (400 MHz, DMSO-$ *d* $₆), <math>\delta$ (ppm): 6.10 (d, J = 8 Hz, 1H), 6.77 (t, 1H), 7.26-7.34 (m, 2H), 7.46-7.52 (m, 3H), 7.66 (t, 1H), 7.79 (d, J = 8 Hz, 1H,), 7.90 (d, J = 8 Hz, 1H) [6.10-7.90 ppm: total 10H from nbiH ligand], 8.16 (2t, 2H), 8.33 and 8.35 (2d, 2H), 8.45-8.50 (m, 2H), 8.69-8.72 (m, 3H), 8.82 and 8.84 (d, 2H) [8.15-8.84 ppm: total 11H from typ ligand].

The orange plate crystals of $Ir-O\cdot Et_2O\cdot CH_3COCH_3$ were grown from slow diffusion of diethyl ether vapor into a solution of Ir-O in acetone. Its powder XRD pattern shows broad peaks due to fast loss of solvent molecules (Et₂O and CH₃COCH₃). Thus we have not given a comparison between experimental and simulated XRD patterns of $Ir-O\cdot Et_2O\cdot CH_3COCH_3$. The red needlelike single crystal

4

of **Ir-R** was obtained as a monophasic material based on the powder XRD pattern, through the evaporation of its solution of CHCl₃ and CH₃OH.

X-Ray crystallographic studies

Single crystal of dimensions $0.20 \times 0.05 \times 0.02 \text{ mm}^3$ for Ir-O·Et₂O·CH₃COCH₃ was used for structural determination on a Rigaku FRE+ CCD diffractometer equipped with VHF Varimax confocal mirrors and an AFC10 goniometer and HG Saturn 724+ detector using graphite-monochromated Mo K α radiation ($\lambda = 0.710$ 73 Å) at 100(2) K. Single crystal of dimensions $0.24 \times 0.15 \times 0.12$ mm³ for Ir-R was used for structural determination on a Bruker SMART APEX CCD diffractometer using graphite-monochromated Mo K α radiation ($\lambda = 0.710$ 73 Å) at room temperature. A hemisphere of data was collected in the θ range 1.82 to 25.03° for Ir-O·Et₂O·CH₃COCH₃ and 1.53 to 25.00° for Ir-R using a narrow-frame method with scan widths of 0.30° in ω and an exposure time of 10 s per frame. Numbers of observed and unique reflections are 41775 and 7263 ($R_{\rm int} = 0.0702$) for Ir- $\mathbf{O}\cdot \mathrm{Et}_2\mathrm{O}\cdot\mathrm{CH}_3\mathrm{COCH}_3$, and 32375 and 5335 ($R_{\mathrm{int}} = 0.0530$) for Ir-R, respectively. The data were integrated using the Siemens SAINT program,^{S3} with the intensities corrected for Lorentz factor, polarization, air absorption, and absorption due to variation in the path length through the detector faceplate. Multi-scan absorption corrections were applied. The structures were solved by direct methods and refined on F^2 by full matrix least squares using SHELXTL.^{S4} All the non-hydrogen atoms were located from the Fourier maps, and were refined anisotropically. All H atoms were refined isotropically, with the isotropic vibration parameters related to the non-H atom to which they are bonded. It should be noted that the single crystals of complex Ir- $O \cdot Et_2 O \cdot CH_3 COCH_3$ is extremely thin orange plates, thus the present crystal data of this complex shows high R_1 value ($R_1 = 0.0928 [I > 2\sigma(I)]$). In the structural refinement of Ir-O·Et₂O·CH₃COCH₃, SQUEEZE was used to removed a highly disordered region (possible some Et₂O and acetone molecules). Additionally, ISOR, DFIX were used to obtain a better refinement results. The crystallographic data for compounds Ir-O·Et₂O·CH₃COCH₃ and Ir-R are listed in Table S2, and selected bond lengths and

angles are given in Tables S3 and S4. CCDC 1570575 and 1570576 contain the supplementary crystallographic data of $Ir-O\cdot Et_2O\cdot CH_3COCH_3$ and Ir-R, which can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Cell culture and MTT assays

HeLa cells were cultured in high-glucose Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin at 37 °C in CO₂ incubator (95% relative humidity, 5% CO₂). Cytotoxicity of complexes **Ir-O** and **Ir-R** against HeLa cells was measured using methyl thiazolyl tetrazolium (MTT) assay. Briefly, approximately 5000 cells were seeded in a 96-well plate. After cell adherence overnight, the medium was removed, and the cells were washed twice with phosphate-buffered saline (PBS). Then a series of different concentrations of **Ir-O** / **Ir-R** (10, 20, 40, 60, or 100 μ M) in 100 μ L of FBS-free DMEM medium were added and incubated for 24 h. This was followed by the addition of 50 μ L of 1× MTT reagent to each well and the plate was kept at 37 °C for 4 h. Then the medium was carefully removed, and 100 μ L of DMSO was added to each well followed by shaking for 10 min. The % viability was calculated as a ratio of absorbance at 490 nm measured by a SparkTM Multimode Microplate Reader (Tecan Austria GesmbH).

Cellular imaging and colocalization assay

HeLa cells (~5 × 10⁴) were plated onto glass-bottom dish (In Vitro Scientific, D35-20-1-N) and allowed to grow overnight. The culture medium was removed and washed with PBS, Following incubation with **Ir-O** or **Ir-R** at 20 μ M in FBS-free DMEM at 37 °C for 1 h, 3 h and 6 h. After that, the medium was removed, and the cells were washed with PBS three times. Fluorescence imaging was performed under a Leica TCS SP5 confocal laser scanning microscope. For **Ir-O**, the excitation was 405 nm, and the emission was collected from 555–615 nm wavelength. For **Ir-R**, the excitation was 405 nm, and the emission was collected from 585–645 nm wavelength.

For colocalization studies, HeLa cells were incubated with **Ir-O** (20 μ M) for 3 hous. Then the cells were washed with PBS three times, and lysosomes were further stained with 1 μ M Lyso-tracker Green DND-26 at 37 °C for 15 min. After that, the medium was removed, and the cells were washed with PBS three times. Luminescence imaging was performed under a Leica TCS SP5 confocal laser scanning microscope. Emission from **Ir-O** was collected from 555–615 nm wavelength with the excitation at 405 nm, and emission from Lyso-tracker Green DND-26 was collected at green channel from 530 to 580 nm with excitation at 514 nm.

Table S1 Electrospray mass spectrometry (ES-MS) data of Ir-O and Ir-R

Compound	Ir-O	Ir-R
(ES-MS) data	704.25 from [Ir(tpy)(nbi)Cl]+	704.42 from [Ir(tpy)(nbi)Cl]+

	Ir-O·Et ₂ O·CH ₃ COCH ₃	Ir-R
Formula	C ₃₉ H ₃₈ N ₅ O ₂ F ₆ PClIr	C ₃₂ H ₂₂ N ₅ F ₆ PClIr
M	981.36	849.16
Crystal system	Monoclinic	Orthorhombic
Space group	$P2_{1}/c$	Pccn
<i>T</i> /K	100(2)	296(2)
a/Å	15.5188(7)	22.8432(12)
b/Å	8.5784(3)	16.3316(9)
c/Å	30.9458(13)	16.2218(9)
eta / °	92.578(4)	
$V/\text{\AA}^3$	4115.5(3)	6051.8(6)
Ζ	4	8
$D_c ({\rm g}{\rm cm}^{-3})$	1.584	1.864
<i>F</i> (000)	1944	3296
GooF on F^2	1.263	1.033
,	0.0928, 0.2143	0.0304, 0.0762
R_1 , w R_2 (all data) ^{<i>a</i>}	0.1167, 0.2249	0.0494, 0.0828
$(\Delta \rho)_{\text{max}}, (\Delta \rho)_{\text{min}}/\text{e} \text{ Å}^{-3}$	4.612, -3.573	1.196, -0.882

Table S2 Crystallographic data of Ir-O·Et₂O·CH₃COCH₃ and Ir-R

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|; wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$

Ir1-N1	2.052(13)	Ir1-C2	2.065(16)	
Ir1-N3	2.055(13)	Ir1-C11	2.447(4)	
Ir1-N4	1.959(12)	N1-C11	1.360(19)	
Ir1-N5	2.047(12)	N2-C11	1.34(2)	
N4-Ir1-N5	81.0 (5)	N1-Ir1-C2	79.4(6)	
N4-Ir1-N1	174.0(5)	N3-Ir1-C2	89.9(5)	
N5-Ir1-N1	99.0(5)	N4-Ir1-Cl1	87.1(4)	
N4-Ir1-N3	80.0(5)	N5-Ir1-Cl1	86.7(4)	
N5-Ir1-N3	161.0(5)	N1-Ir1-Cl1	98.9(4)	
N1-Ir1-N3	99.8(5)	N3-Ir1-Cl1	92.7(4)	
N4-Ir1-C2	94.6(6)	C2-Ir1-Cl1	177.1(4)	
N5-I1-C2	91.2(5)			

Table S3 Selected bond lengths (Å) and angles (°) for $Ir-O\cdot Et_2O\cdot CH_3COCH_3$

Table S4 Selected bond lengths (Å) and angles (°) for Ir-R

Ir1-N1	2.063(4)	Ir1-C8	2.058(5)
Ir1-N3	2.054(4)	Ir1-Cl1	2.4638(13)
Ir1-N4	1.960(4)	N1-C11	1.346(6)
Ir1-N5	2.050(4)	N2-C11	1.348(7)
N4-Ir1-N5	80.70(17)	N3-Ir1-N1	100.60(15)
N4-Ir1-N3	80.22(17)	C8-Ir1-N1	88.44(17)
N5-Ir1-N3	160.87(16)	N4-Ir1-Cl1	87.68(12)
N4-Ir1-C8	89.81(17)	N5-Ir1-Cl1	87.04(12)
N5-Ir1-C8	86.15(18)	N3-Ir1-Cl1	90.83(12)
N3-Ir1-C8	95.14(18)	C8-Ir1-Cl1	173.04(15)
N4-Ir1-N1	178.13(16)	N1-Ir1-Cl1	93.98(11)
N5-Ir1-N1	98.52(15)		

Compound	Medium	$\lambda_{abs}\left(nm\right)$	$\lambda_{em}\left(nm\right)$	Lifetime (ns)	quantum yield
Ir-O	CH ₃ CN (298 K)	269, 314, 325, 384,	581	165 (93%),	2.1%
		and a tail to 570		296 (7%)	
	DMSO-PBS (298 K)	282, 313, 325, 377,	580	-	0.35%
		and a tail to 570			
	EtOH-MeOH (77 K)	-	552, <mark>599</mark>	-	-
			and 655		
Ir-R	CH ₃ CN (298 K)	280, 316, 376,	612	86 (91%),	0.56%
		and a tail to 570		169 (9%)	
	DMSO-PBS (298 K)	287, 316, 375,	610	-	0.20%
		and a tail to 570			
	EtOH-MeOH (77 K)	-	581 and 633	-	-
nbiH	CH ₃ CN (298 K)	312	-	-	-
tpy	CH ₃ CN (298 K)	279	-	-	-

Table S5 Photophysical properties of **Ir-O**, **Ir-R**, nbiH and tpy [DMSO-PBS (v/v=1/9), C₂H₅OH-CH₃OH (v/v=3/1)].

Table **S6** Oil-water partition coefficient of **Ir-O** and **Ir-R**.

Compound	Ir-O	Ir-R
ε / M ⁻¹ cm ⁻¹	24930	24440
[solute] _{o, e} /µM	107.293	44.775
[solute] _{w, e} /µM	178.062	233.365
log P	-0.220	-0.717

Fig. S1 The photographs of Ir-O (left) and Ir-R (right) under room light.

Fig. S2 Electrospray mass spectrometry (ES-MS) of Ir-O in CH₂Cl₂-CH₃OH solution.

Fig. S3 Electrospray mass spectrometry (ES-MS) of Ir-R in CH₂Cl₂-CH₃OH solution.

Fig. S4 ¹H NMR spectrum of nbiH (400 MHz, DMSO- d_6).

00	7 32	6 N 9 N 0	200
NN		NNNNN	000
<u>.</u>	ര് ര് ര്		NNN
52	512		512

Fig. S5 ¹H NMR spectrum of $Ir(tpy)Cl_3$ (400 MHz, DMSO- d_6).

-9.10

Fig. S6 ¹H NMR spectrum of Ir-O (400 MHz, DMSO- d_6).

-6.10

Fig. S7 ¹H NMR spectrum of Ir-R (400 MHz, DMSO- d_6).

-6.23

Fig. S9 ¹³C NMR spectrum of Ir-R (500 MHz, DMSO- d_6).

Fig. S10 Experimental and simulated XRD patterns of Ir-R.

Fig. S11 The nbi⁻ lignds in Ir-O·Et₂O·CH₃COCH₃ (top) and Ir-R (bottom) showing different twist extent and coordination mode.

Fig. S12 The packing structure of $Ir-O\cdot Et_2O\cdot CH_3COCH_3$, in which supramolecular chains along *b* axis are held together by van der Waals interactions.

Fig. S13 The packing structure of Ir-R in which supramolecular chains along c axis are held together by van der Waals interactions.

Fig. S14 UV-vis absorption spectra of **Ir-O**, **Ir-R** in CH_3CN and in phosphate buffer solution (PBS, pH = 7.4) containing 10% DMSO.

Fig. S15 Phosphorescence spectra of Ir-O and Ir-R in C₂H₅OH-CH₃OH (v/v = 3/1) at 77 K ($c = 1.0 \times 10^{-4}$ M, $\lambda_{ex} = 398$ nm).

Fig. S16 The luminescence spectra of **Ir-O** and **Ir-R** in CH₃CN and in phosphate buffer solution (PBS, pH = 7.4) containing 10% DMSO ($c = 1 \times 10^{-4}$ M, $\lambda_{ex} = 398$ nm).

Fig. S17 Luminescence spectral changes of **Ir-O** in CH₃CN (c = 1×10^{-4} M, $\lambda_{ex} = 398$ nm) upon adding tetrabutylammonium hydroxide (TBAOH).

Fig. S18 Luminescence spectral changes of **Ir-R** in CH₃CN (c = 1×10^{-4} M, $\lambda_{ex} = 398$ nm) upon adding tetrabutylammonium hydroxide (TBAOH).

Fig. S19 Luminescence spectra of **Ir-O** ($c = 1 \times 10^{-4}$ M, $\lambda_{ex} = 398$ nm) in CH₃CN (plot a), in CH₃CN containing 4 eq. TBAOH (plot b), and in CH₃CN containing 2.5 eq. TBAOH and 4 eq. TFA (plot c).

Fig. S20 Luminescence spectra of **Ir-O** ($c = 1 \times 10^{-4}$ M, $\lambda_{ex} = 398$ nm) in CH₃CN (plot a), in CH₃CN containing 2.5 eq. TBAOH (plot b), and in CH₃CN containing 2.5 eq. TBAOH and 2.5 eq. TFA (plot c).

Fig. S21 TEM images (left) and size distributions measured by DLS (right) of **Ir-O** (a) and **Ir-R** (b) in H₂O ($c = 20 \mu$ M).

Fig. S22 The cell viability of HeLa cells incubated with different concentrations of Ir-O and Ir-R for 24 h. Data bars show mean \pm s.d. (*n* =5 technical replicates).

Fig. S23 Confocal laser scanning microscopy (CLSM) images of living Hela cells incubated with 20 iM **Ir-O** (left, pseudo red color) or **Ir-R** (right, pseudo red color) at 37 °C for different time. Scale bar: 50 iM.s

References

- S1 J.-P. Collin, I. M. Dixon, J.-P. Sauvage, J. A. Gareth Williams, F. Barigelletti, L. Flamigni, J. Am. Chem. Soc., 1999, 121, 5009.
- S2 D.-P. Gong, T.-B. Gao, D.-K. Cao and M. D. Ward, Dalton Trans., 2017, 46, 275.
- S3 SAINT, Program for Data Extraction and Reduction, Siemens Analytical X-ray Instruments, Madison, WI, 1994–1996.
- S4 (a) SHELXTL, Reference Manual, version 5.0, Siemens Indus-trial Automation,
 Analytical Instruments, Madison, WI, 1997; (b) G. M. Sheldrick, Acta
 Crystallogr., Sect. A: Fundam. Crystallogr., 2008, 64, 112.