Supporting Information

Antonin Leblanc, Nicolas Mercier,* Magali Allain, Marie-Claire Dul, Guy Weber, Nicolas Geoffroy, Jean-Pierre Bellat and Igor Bezverkhyy*

A robust Viologen and Mn-based porous coordination polymer with two types of Lewis acid sites providing high affinity for H₂O, CO₂ and NH₃.

I- Synthesis of (H4pc3)(Cl)2

The synthesis of the $(H_4pc3)(Cl)_2$ has been obtained in two steps according to the Zincke reaction (Figure S1). The first step is the synthesis of the Zincke salt of 4,4'-bipyridinium, 1,1'bis-(2,4-dinitrophenyl) dichloride. In a 50 mL flask, 1.562g (10 mmol, 1 eq) of 4,4'-bipyridine is added to 4.051g (20 mmol, 2 eq) of 1-chloro-2,4-dinitrobenzene, and 25 mL of ethanol (96%). The mixture was heated under reflux and stirred for 48 hours, then the precipitate was filtered off and washed with ethanol (96%), acetone and dried with diethyl ether. The second step is the synthesis of the expected salt. In a 50 mL flask, 5.613g (10 mmol, 1eq) of 4,4'-bipyridinium-1,1'bis-(2,4-dinitrophenyl) dichloride are added to 3.623g (20 mmol, 2 eq) of 5-aminoisophtalic acid, and 25 mL of ethanol (96%). The mixture was heated under reflux and stirred for 48 hours. The solid was filtered off and washed with ethanol (96%), acetone and dried with diethyl ether. The second step is the synthesis of the expected salt. In a 50 mL flask, 5.613g (10 mmol, 1eq) of 4,4'-bipyridinium-1,1'bis-(2,4-dinitrophenyl) dichloride are added to 3.623g (20 mmol, 2 eq) of 5-aminoisophtalic acid, and 25 mL of ethanol (96%). The mixture was heated under reflux and stirred for 48 hours. The solid was filtered off and washed with ethanol (96%), acetone and dried with diethyl ether. The compound was characterized by ¹H NMR (300 MHz – olid solubilized in DMSO-d₆) (Figure S2). The general yield of the synthesis is

Figure S1 : Synthesis $(H_4pc3)(Cl)_2$ leading to a general yield of 32%.

Figure S2 : 1H NMR of (H₄*pc3*)(Cl)₂ solubilzed in deuterated DMSO.

II- Synthesis of [Mn(pc3)(H₂O)₂].xH₂O

The PCP [Mn(*pc3*)(H₂O)₂]x.H₂O (x \approx 3.5) was obtained as pure phase by hydrothermal method : 3mg of (H₄*pc3*)(Cl)₂ are added to 8mL of a saturated water solution of (H₄*pc3*)(Cl)₂ whose pH was fixed to pH=7 thanks to the addition of a suitable quantity of triethylamine ; then 100mg of MnCl₂.4H₂O were added to this solution ; the heating program was set to : 50 hours from RT to 160°C, 160 °C for 20 hours, and a final cooling step from 160 °C to RT for 12 hours. The sample was filtered off and dried in air. In Fig. S3, the XRPD pattern of the sample is compared to the theoretical one calculated from the crystal structure of **1**. All positions of experimental lines well fit with the expected ones showing that the phases has been obtained as a pure phase. Moreover, the C, N, H elemental analyses which have been carried out, the values well corresponding to the expected ones for a formulation of [Mn(*pc3*)(H₂O)₂]3.5 H₂O (exp: C: 48.65, N: 4.29, H: 3.80; calc: C: 49.02, N: 4.40, H: 3.92).

Figure S3 : Experimental and theoretical XRPD of $[Mn(pc3)(H_2O)_2]x.H_2O$.

III- Crystal structure of [Mn(pc3)(H₂O)₂].3H₂O

While the TGA analysis and elemental analysis give a formulation of $[Mn(pc3)(H_2O)_2]x.H_2O$ with x ≈ 3.5 , the single crystal structure analysis leads to a formulation of $[Mn(pc3)(H_2O)_2]3.H_2O$, the three water molecules in pores being well located.

Empirical formula	C26 H24 Mn N2 O13
Ou	C26 H14 N2 O8, Mn, 5 H2 O
Formula weight	627.41
Temperature	150.0(1) K
Wavelength	1.54184 A
Crystal system, space group	Monoclinic, P 21/c
Unit cell dimensions a =	14.4605(8) A alpha = 90 deg.
b =	10.4594(5) A beta = 111.925(7) deg.
с =	18.7370(10) A gamma = 90 deg.
Volume	2629.0(3) A^3
Z, Calculated density	4, 1.585 Mg/m^3
Absorption coefficient	4.755 mm ⁻¹
F(000)	1292
Crystal size	0.156 x 0.087 x 0.042 mm
Theta range for data collection	3.295 to 76.515 deg.
Limiting indices	-18<=h<=17, -12<=k<=8, -23<=1<=19
Reflections collected / unique	10699 / 5314 [R(int) = 0.0452]
Completeness to theta = 74.000	98.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.55219
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5314 / 0 / 376
Goodness-of-fit on F^2	1.041
Final R indices [I>2sigma(I)] R1	L = 0.0656, WR2 = 0.1816 [4003 Fo]
R indices (all data)	R1 = 0.0860, WR2 = 0.1956
Largest diff. peak and hole	1.910 and -0.725 e.A^-3

Table S1 : Summary of crystallographic data for [Mn(*pc3*)(H₂O)₂]3.H₂O.

IV- Unit cell determination of the dehydrated phase

The unit cell of the dehydrated phase has been tentatively determined using the TREOR program from the XRPD collected at 150°C under nitrogen flux (main text). Despite the poor quality of the pattern, a unit cell which is correlated to the one of the initial compound is found, showing the decreasing of two parameters, a and b, while the c parameter doesn't change.

Position	of	lines	(°	2 0)
7	.20	8650		
0	9.70	07850		
10).50	02800		
11	.47	79400		
13	3.76	57410		
14	1.45	53670		
14	1.75	58610		
16	5.75	50259		
17	7.20)2049		
17	7.95	55030		
18	3.43	35989		

	19	9.131: 9.481	201 440						
	20	(-477)	520 001						
	21	L.606 2 698	991 811						
	23	3.691	589						
	24	4.415	751						
	25	5.371	889						
	26	5.388	411						
	26	5.927	259						
	29	9.701	530						
-	31	L.056	890	-					
Pr		ed un	it cel	$\frac{1}{02}$	2003 7 3	ATEA - 00	00000	0 00000	DEC
R		614 ⁰	408 0 204 0	012	2603 A 1	RETA - 90. RETA -114	822639	0.137194	DEG
c	= 13	3.483	883 0	.026	6756 A G	AMMA = 90.	000000	0.000000	DEG
U	NIT	CELL	VOLUME	=	2245.94	A**3			
TOTA	L NUN	ABER (OF LIN	ES =	= 23 NU	UMBER OF C	ALC. LIN	ES = 37	7
	H F	K L	SST-O	BS	SST-CALC	DELTA	2TH-OBS	2TH-CAL	C D-OBS
	0 0) 1	0.003	956	0.003962	-0.000005	7.212	7.217	12.2466
-	2 () 1	0.007	156	0.007170	-0.000014	9.705	9.715	9.1057
	1 () 1	0 000	<u></u>	0.008288	0 000010	10 500	10.447	0 41 00
	1 1	LU 1	0.008	3//	0.008396	-0.000019	10.503	10.515	8.4162
-	2 1		0.010	002	0.010008	-0.000008	11.4/9	13 749	1.1023
_	2 () 2	0.014	365	0.014356	0.00009	13.767	13.763	6.4270
	2 () 1	0.016	423	0.016569	-0.000146	14.726	14.791	6.0109
-	3 1	L 1	0.021	215	0.021124	0.000091	16.750	16.714	5.2886
	0 1	L 2	0.022	366	0.022266	0.000100	17.202	17.163	5.1507
	1 () 2			0.022523			17.263	
	3 1	L O	0.024	351	0.024211	0.000139	17.955	17.903	4.9363
	0 2	2 0	0.025	661	0.025678	-0.000016	18.436	18.442	4.8086
		2 0	0.027	615	0.027654	-0.000040	19.131	19.145	4.6354
_	4 (ノ) 1	0.028	623	0.028679	-0.000054	19.481	19.500	4.5529
	2 (0 031	595	0.020005	-0 000035	20 478	20 489	4 3336
_	4 1	1 2	0.035	134	0.035099	0.000036	21.607	21.596	4.1096
	3 1	L 1			0.035222			21.634	101000
-	3 1	L 3	0.038	727	0.038720	0.00007	22.699	22.697	3.9143
-	1 2	2 2			0.038802			22.721	
	0 1	L 3	0.042	139	0.042075	0.000064	23.692	23.673	3.7525
	2 2	2 1			0.042246			23.722	
	1 () 3	0.044	715	0.044682	0.000033	24.416	24.407	3.6428
-	5 1				0.048054			25.326	
-	1 1		0 0/8	227	0.048191	0 000026	25 372	25.362	3 5076
_		2 2	0.040	227 NGG	0.043201	0.000020	25.372	25.303	3.3070
_	2 () 4	0.052	0	0.052498	0.000229	20.000	26.491	5.5740
	3 1	L 2	0.054	209	0.054157	0.000052	26.927	26.914	3.3084
-	4 2	2 2			0.054357			26.965	
	3 2	2 1			0.054480			26.996	
	2 3	3 0	0.065	691	0.065682	0.00009	29.702	29.699	3.0054
-	5 () 4			0.065816			29.730	
	1 3	3 1	0 0 0 7 1	C 7 0	0.066063	0 000101	01 055	29.787	0 0000
	5]	L 1	0.071	672	0.0/1552	0.000121	31.057	31.030	2.8773

IV- Adsorption measurements

Adsorption–desorption isotherms of H₂O, CO₂ and NH₃ on **1** were measured at 25 °C using a home-built McBain-type thermobalance. Before measurements, the samples (ca. 15 mg) were outgassed at 180 °C under vacuum (10^{-5} hPa) overnight. Then, measurement of the adsorption branch of the isotherms was started by introducing the gas into the balance, with the pressure increasing incrementally from 0.1 to 30 hPa for H₂O and up to 1000 hPa. After the introduction of each dose of adsorptive, the sample weight was measured continuously until its stabilization. The values of the pressure and weight gain at each equilibrium state were used to construct the adsorption isotherm. Once the highest pressure value had been attained, the desorption branch of the isotherm was measured by progressively decreasing the pressure. The estimated experimental error on the adsorbed amount was about 1 mg g⁻¹. The accuracy of the pressure measurement was 1%, and the temperature was maintained within 1 °C.

CO2 adsorption

Figure S4 : Hypothetical scheme of interaction between CO₂ molecules (gray: C, red: O) and Mn^{2+} (violet) of dimeric units. The sketch is drawn to scale using the following parameters: $d(Mn-Mn) = 3.5 \text{ Å}, r(Mn^{2+}) = 0.72 \text{ Å}, d(C-O) = 1.2 \text{ Å}, r_{VdW}(O) = 1.52 \text{ Å}.$

Figure S5: FTIR spectra of hydrated **1** before (blue) and after adsorption-desorption cycle of CO₂ at 298K (red). The spectra are offset by 0.1 to facilitate comparison.

Figure S6: XRD patterns of hydrated **1** before (blue) and after adsorption-desorption cycle of CO₂ at 298K (red).

In situ PXRD of 1 in the presence of ammonia

The XRD pattern of **1** in the presence of NH₃ was recorded using the *in situ* capillary technique. To realize the measurements **1** was placed in a Pyrex capillary of 0.5 mm external diameter. The capillary was connected to a McBain thermobalance which contained the same sample in the measurement crucible. Given that both samples (inside the capillary and in the measurement crucible) were exposed to the same atmosphere at the same temperature, measuring the weight of one of them gives us the information about the amount of NH₃ adsorbed on the sample placed in the capillary. After outgassing at 180°C under a residual pressure of 10⁻⁵ hPa for 15 h the sample was cooled and exposed to the same atmosphere as the solid in the balance. After attaining 960 hPa the capillary was sealed off and the XRD pattern of the sample was recorded at room temperature using Cu K $\alpha_1\alpha_2$ radiation on a Bruker D8-A25 Discover diffractometer equipped with a LynxEyeXE detector.

Figure S7: Adsorption isotherm of NH₃ on **1** at 298K: full symbols – adsorption, open symbols - desorption.