Supporting Information

Ferromagnetic Coupling in Copper Benzimidazole Chloride: Structural, Mass Spectrometry, Magnetism, and DFT Studies

Xing-Xing Shi, ^{+,a} *Yuexing Zhang*, ^{+,b} *Qiu-Jie Chen*, ^{+,b} *Zheng Yin*, ^c *Xue-Li Chen*, ^b *Zhenxing Wang*, ^d *Zhong-Wen Ouyang*, ^d *Mohamedally Kurmoo*, ^e *Ming-Hua Zeng*^{*,a,b}

^a Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China. ^b Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China. ^c College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China. ^d Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China. ^e Institut de Chimie de Strasbourg, CNRS-UMR 7177, Université de Strasbourg, 67070 Strasbourg, France.

Figure S1. The synthesis procedure and photograph of CBC crystals.

Figure S2. (Left) TGA of **CBC**. There is no weight loss until a turning point at nearly 175 °C, suggesting no solvent in the structure of **CBC**. The first weight loss of 50.9% from 175 °C to 370 °C corresponds to the departure decomposition of the H*mbm* ligand (Calc. 54.6%). The residue may be CuO with residuals of 28.7% (Calc. 26.8 %). (Right) Experimental and simulated PXRD patterns for **CBC**.

	CBC (296 K)	CBC (90 K)					
Formula	C ₉ H ₁₀ Cl ₂ CuN ₂ O	C ₉ H ₁₀ Cl ₂ CuN ₂ O					
Weight	296.63	296.63					
Crystal System	monoclinic	monoclinic					
Space Group	$P 2_1/n$	$P 2_1/n$					
<i>a</i> (Å)	9.752(3)	9.723(3)					
<i>b</i> (Å)	7.817(2)	7.711(3)					
<i>c</i> (Å)	14.238(4)	14.121(5)					
β (°)	101.21(3)	101.44(4)					
$V(Å^3)$	1064.7(5)	1037.72(6)					
Ζ	4	4					
$D_c (g \cdot cm^{-3})$	1.851	1.899					
F (000)	596	596					
$\mu (\mathrm{mm}^{-1})$	2.524	2.589					
Reflection collected	15478	4778					
Unique Reflection	3171	2475					
R _{int}	0.0321	0.0259					
$R_1^{a}, w R_2^{b} [I > 2\sigma(I)]$	0.0249/0.0610	0.0302/0.0654					
R_1 , wR_2 (all data)	0.0287/0.0633	0.0340/0.0682					
GOF	1.093	1.070					
H-atom treatment	refall	refall					
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}, (e \text{ Å}^{-3})$	0.311, -0.452	0.533, -0.467					
$\overline{{}^{a}R_{1}=\Sigma F_{o} - F_{c} /\Sigma F_{o} , {}^{b}wR_{2}=[\Sigma w(F_{o})]$	^a $R_1 = \Sigma F_0 - F_c / \Sigma F_0 $, ^b $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$.						

 Table S1. Crystal and structure refinement data for CBC at 296 and 90 K.

	CBC(296 K)	СВС(90 К)	Max. deviation ^a
<i>a</i> / Å	9.752(3)	9.723(3)	0.30%
b / Å	7.817(2)	7.711(3)	1.36%
<i>c</i> / Å	14.238(4)	14.121(5)	0.82%
β (°)	101.21(3)	101.44(4)	-0.23%
$V / Å^3$	1064.7(5)	1037.72(6)	2.53%
Cu(1)-N(1)	1.970(12)	1.969(18)	0.05%
Cu(1)-Cl(1)	2.251(6)	2.253(6)	-0.09%
Cu(1)-O(1)	2.071(12)	2.062(16)	0.43%
Cu(1)-Cl(2)	2.225(6)	2.228(6)	-0.13%
Cu…Cl	2.998(8)	2.948(6)	1.67%
Cu…Cu	4.581(9)	4.543(4)	0.83%
N(1)-Cu(1)-O(1)	80.58(5)	80.86(7)	-0.35%
O(1)-Cu(1)-Cl(1)	172.65(4)	173.14(5)	0.28%
O(1)-Cu(1)-Cl(2)	86.95(4)	86.88(5)	0.08%
C(8)-O(1)-Cu(1)	115.67(9)	115.60(13)	0.06%
C(2)-N(1)-Cu(1)	114.71(10)	114.54(15)	0.15%
N(1)-Cu(1)-Cl(1)	100.08(4)	99.81(5)	0.27%
N(1)-Cu(1)-Cl(2)	158.97(4)	159.46(6)	-0.31%
Cl(2)-Cu(1)-Cl(1)	94.45(2)	94.33(2)	0.13%
Cu(1)-O(1)-H(1)	110.7(16)	109.0(2)	1.5%
C(3)-N(1)-Cu(1)	139.24(10)	139.39(15)	-0.11%
Cu(1)- $Cl(1)$ ···Cu	121.84(8)	122.13(6)	-0.24%

	1 / 11 11 /1		$\mathbf{C} = \mathbf{C} \mathbf{D} \mathbf{C} + \mathbf{D} \mathbf{C} + \mathbf{D} \mathbf{C} + \mathbf{D} \mathbf{C} \mathbf{C} + \mathbf{D} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} C$
Table S2. Cell parameters	, selected bond lengths	(A) and angles (°) for CBC at 296 and 90 K.

^aMax. deviation = [**CBC**(296 K)-**CBC**(90 K)]/Max. {**CBC**(296 K), **CBC**(90 K)}

	CBC_90 K	CBC_296 K	Ideal structures
4_Coordination	1.825	1.910	Square
	24.731	24.419	Tetrahedron
	12 621	12 /10	Seesaw or sawhorse ^a (cis-
	12.031	12.410	divacant octahedron)

Table S3. The CShM values calculated by SHAPE 2.0 for CBC.

^a A regular polyhedron with one or two vertices removed.

Table S4 Calculated complexation energies without and after basis set superposition errors correction (BSSE) (CE and CE-BSSE, in kcal/mol) between **CBC** monomer and its all possible neighbors in **CBC** crystals, the magnetic interaction *J* between Cu atoms in some dimers are also given. Interaction schemes of negative complexation energy smaller than -4 kcal/mol and positive complexation energy are not given.

	Method	CE	CE-BSSE	J/cm ⁻¹	Interaction Types and Scheme
	B3LYP-D3/(6-311G*,SDD)	-39.64	-35.16	0.04	PhC ₃ N ₂ \cdots PhC ₃ N ₂ (3.525, 3.339)
dimer67_14	B3LYP-D3/TZVP	-38.6	-34.68	0.04	-
	B97D-D3/(6-311G*,SDD)	-38.47	-34.1	0.19	
	B97D-D3/TZVP	-37.45	-33.61	0.16	0 0058 585
	B3LYP-D3/(6-311G*,SDD)	-19.84	-17.63	3.58	
	B3LYP-D3/TZVP	-19.64	-17.92	4.46	Cl1a…H-O1 (3 094)
	B97D-D3/(6-311G*,SDD)	-18.47	-16.27	-33.38	Cl2a…Cu1 (2.998)
dimer38_14	B97D-D3/TZVP	-18.41	-16.64	-63.60	್ಯತ್ರಿ
	LC-BLYP/(6-311G*,SDD)	-18.07	-15.72	1.18	
	LC-BLYP/TZVP	-17.48	-15.76	1.23	ચર્ુુ, અં છે.
	ωB97XD/(6-311G*,SDD)	-18.50	-16.30	1.45	
	$\Box \omega B97XD/TZVP$	-17.73	-16.25	1.46	
	B3LYP-D3/(6-311G*,SDD)	-13.98	-12.26	0.001	2 PhC ₃ N ₂ ···CH ₃ ($\overline{3.516}$)
aimer64_14	B3LYP-D3/TZVP	-13.2	-12.18	0.001	

	B97D-D3/(6-311G*,SDD)	-14.81	-13.13	0.005	ு ஆ ண்க்
	B97D-D3/TZVP	-13.87	-12.91	0.003	'ને છે. છે. છે છે.
	B3LYP-D3/(6-311G*,SDD)	-13.48	-13.12	-0.01	2 Cl2a···CH ₂ (4.799)
	B3LYP-D3/TZVP	-13.30	-12.78	-0.01	ം <mark>ക് ഈ}</mark> ലാലാ
dimer58_14	B97D-D3/(6-311G*,SDD)	-12.56	-12.19	-0.05	0.2.
	B97D-D3/TZVP	-12.46	-11.97	-0.04	
	B3LYP-D3/(6-311G*,SDD)	-11.41	-10.94	-0.08	Cl1a…C(Me)–H(3.774) Cl1a…CH ₂ (3.843)
1. 05.14	B3LYP-D3/TZVP	-11.56	-11.01	-0.08	
dimer95_14	B97D-D3/(6-311G*,SDD)	-10.78	-10.30	-19.98	
	B97D-D3/TZVP	-11	-10.47	-25.00	ခဲ့အအေးစ
	B3LYP-D3/(6-311G*,SDD)	-4.65	-4.25	-0.003	نې د و مو
dimer47 14	B3LYP-D3/TZVP	-4.52	-4.09	-0.002	
—	B97D-D3/(6-311G*,SDD)	-4.72	-4.33	-0.004	
	B97D-D3/TZVP	-4.6	-4.17	0	. Briteroon
	B3LYP-D3/(6-311G*,SDD)	-9.73	-9.06	-0.001	
	B3LYP-D3/TZVP	-10.17	-9.14	0.001	38.
dimer 04 14	B97D-D3/(6-311G*,SDD)	-9.23	-8.55	-5.14	
uiiiici 94_14	B97D-D3/TZVP	-9.67	-8.66	-8.70	
	LC-BLYP/(6-311G*,SDD)	-8.45	-7.76	0.001	
	LC-BLYP/TZVP	-8.82	-7.82	0	

	ωB97XD/(6-311G*,SDD)	-9.38	-8.70	0.001	
	$\Box \omega B97XD/TZVP$	-9.54	-8.68	0.001	
	B3LYP-D3/(6-311G*,SDD)	-4.65	-4.25	-0.003	• 2 · · ·
dimer50_14	B3LYP-D3/TZVP	-4.52	-4.09	-0.001	
uniter30_14	B97D-D3/(6-311G*,SDD)	-4.72	-4.33	-0.003	jaga ang
	B97D-D3/TZVP	-4.6	-4.17	0.001	· · · · · · · · · · · · · · · · · · ·
	B3LYP-D3/(6-311G*,SDD)	-134.12	-131.68		200
011 0	B3LYP-D3/TZVP	-139.36	-135.14		
Cl1a_Cu	B97D-D3/(6-311G*,SDD)	-129.04	-126.47		
	B97D-D3/TZVP	-135.18	-130.82		J I I I I I I I I I I I I I I I I I I I
	B3LYP-D3/(6-311G*,SDD)	-130.61	-128.26		ي قود
Cl2a Cu	B3LYP-D3/TZVP	-135.62	-132.17		
0124_04	B97D-D3/(6-311G*,SDD)	-126.39	-123.89		
	B97D-D3/TZVP	-132.28	-128.71		
	B3LYP-D3/(6-311G*,SDD)	-60.27	-54.80		ی فود
CuCl2_L	B3LYP-D3/TZVP	-54.24	50.60		
	B97D-D3/(6-311G*,SDD)	-50.37	-44.95		
	B97D-D3/TZVP	-46.79	-42.88		3 - 0, .
CuCl2_CuCl2L	B3LYP-D3/(6-311G*,SDD)	-12.36	-11.10	-2.55	್ರಿ ್ರಾಶವಿ ಪ್ರಾರ್ಥ್ ಆಗ್ರಾ

CuCl2movingCl_Cu Cl2L	B3LYP-D3/(6-311G*,SDD)	-12.10	-11.05	-0.22	े २ ० अंट्राव्युं स्क्र ै
CuCl_CuCl2L	B3LYP-D3/(6-311G*,SDD)	-56.76	-55.71	-269.30	್ರ ್ರಹಾಷ್ಟ್ರಾಘ್ಯಾ
CuCl2LmovingCl_C uCl2LmovingCl	B3LYP-D3/(6-311G*,SDD)	-35.47	-31.44	-0.016	్రహుచ్చ డ ిం
CuClL_CuClL	B3LYP-D3/(6-311G*,SDD)	21.38	24.93	-0.02	్రతిపుడ్తు. సతిపుడ్తు. కారం
L_CuCl2LmovingCl	B3LYP-D3/(6-311G*,SDD)	-24.55	-20.53		ు ఆ ద్రజాపక్రం సార్రా ఉందిన
L_L	B3LYP-D3/(6-311G*,SDD)	-11.80	-7.94		<mark>ం ర్రం</mark> త్రం శ్రాంత్రం

	Bond length	Mayer bond order	Wiberg bond order analysis in Lowdin	Fuzzy bond order	Laplacian
	length	analysis	orthogonalized basis	analysis	
Cu1-Cl2	2.25087	0.726732	1.40226375	1.270805	0.349608
Cu1-Cl3	2.22487	0.850844	1.44325973	1.278124	0.355882
Cu1-N6	1.96971	0.408214	0.71233414	0.973899	0.349206
Cu1-O4	2.06935	0.247506	0.55525315	0.802346	0.119568
Cu26-Cl27	2.25087	0.787143	1.45264801	1.280576	0.350855
Cu26-Cl28	2.22488	0.819988	1.50536019	1.314167	0.384987
Cu26-N31	1.96971	0.358329	0.68469556	0.945115	0.352326
Cu26-O29	2.06935	0.239623	0.53960702	0.784938	0.113537
Cl3…Cu26	2.99865	0.072951	0.35420619	0.321205	0.03227728
Cl2…H30	2.23035	0.050834	0.10228399	0.090567	0.00005362

 Table S5. Bond order analysis of CBC. Atomic labels are shown below the table.

l
r
1

Table S6. List of H-bonds, C–H··· π and π ··· π interactions for CBC.

Symmetric code: *i*) 1-x, -y, -z; *ii*) 1-x, -y, 1-z.

^aDistance between acceptor and donor; ^bDistance between acceptor and H; ^cCentroid-to- centroid distance; ^d Interplanar distance; ^eAngle of acceptor-hydrogen-donor; ^fComplexation energies were calculated using B3LYP functional with BSSE correction; ^g the interaction between two CBC molecules infact including other types of interaction involving Cu^{...} π and Cl^{...}CH(Ph).

Figure S3. View of the 3D packing structure of CBC along the *b* axis.

Figure S4. Intermolecular interactions in the structure of **CBC**. (a) π (PhC₃N₂)··· π (PhC₃N₂) (dark dotted line); (b) Cu1···Cl2a (light orange dotted line); H1···Cl1a (indigo red dotted line); (c) C-H··· π (PhC₃N₂) (pink dotted line) ; (d) H1B···Cl2a (bright green dotted line) , Δ E is calculated complexation energy between different **CBC**.

Figure S5. The positive mode (left) and negative mode (right) ESI-MS of **CBC** for different insource energies of 0, 20, 40 and 100 eV. The crystals were dissolved in DMSO and diluted by CH₃CN for ESI-MS measurements.

Table S7. Peak assignments, relative intensity and R deviation of the ESI-MS spectrum of **CBC** under different in-source energy.

/ f 4h		R	elative Inten	sity / R ^a (9	%)
m/z of the	Fragment	0eV	20.41	40 aV	100eV
реак	реак		20e V	40e v	(R)
	Positive M	ode			
161.07	[(H <i>mbc</i>)+H] ⁺ (161.07)	1.6	6.2	72.7	16.2 (0.2)
163.07	[H <i>mbm</i> +H] ⁺ (163.09)	100 (0.63)	100	15.1	0
181.97	[Cu ^I (DMSO)(CH ₃ CN)] ⁺ (181.97)	1.6	7.7	27.6	100 (4.27)
236.02	[Cu ^{II} (OH)(DMSO) ₂] ⁺ (236.00)	0.3	1.7	33.5	30.3 (10.33)
266.03	[Cu ^I (<i>mbm</i>)(CH ₃ CN)+H] ⁺ (266.04)	0.7	3.6	23.2	62.4 (0.89)
302.01	[Cu ^{II} (<i>mbm</i>)(DMSO)] ⁺ (302.02)	22.7 (3.28)	24.2	0	0
303.02	[Cu ^I (<i>mbm</i>)(DMSO)+H] ⁺ (303.02)	0	0	0	5.9 (4.73)
337.99	[Cu ^{II} (<i>mbm</i>)Cl(DMSO)+H] ⁺ (337.99)	10.1 (1.39)	1.1	0	0
385.07	[Cu ^I (<i>mbm</i>)(DMSO)(CH ₃ CN) ₂ +H] ⁺ (385.08)	0	0	34.0	38.7 (3.28)
386.08	[Cu ^{II} (<i>mbm</i>)(H <i>mbm</i>)] ⁺ (386.08)	8.9	9.8 (2.21)	0	0
484.97	$[Cu^{II}_{2}(mbm)_{2}Cl]^{+}(484.97)$	0.4	2.6	6.5	15.7 (5.58)
609.07	$[Cu^{II}_{2}(mbm)_{3}]^{+}(609.07)$	0.5	1.7	4.3	3.8 (1.40)
743.93	$[Cu^{II}_{3}(mbm)_{3}Cl_{2}]^{+}(743.94)$	0	0.5	1.4	2.2 (7.52)
878.80	$[Cu^{II}_4(mbm)_3Cl_4]^+(878.80)$	0	0	0.6	3.6 (10.54)
1004.90	$[Cu^{II}_4(mbm)_4Cl_3]^+(1004.91)$	0.2	0.5	1.3	1.8 (7.27)
1137.77	$[Cu^{II}_{5}(mbm)_{4}Cl_{5}]^{+}(1137.77)$	0.3	1.7	1	0.6 (35.10)
	Negative M	lode			
169.83	$[Cu^{II}Cl_3]^-$ (169.83)	100 (1.69)	100	100	100 (1.13)
232.76	$[Cu_{2}^{1}Cl_{3}]^{-}(232.76)$	16.15	11.63	18.78	15.99 (3.62)
267.73	$[Cu^{I}Cu^{II}Cl_{4}]^{-}$ (267.73)	5.21	3.54	6.40	8.18 (3.28)
304.70	$[Cu^{II}_{2}Cl_{5}]^{-}(304.69)$	0.76	1.78	22.20	26.72 (4.53)
402.60	$[Cu^{I}Cu^{II}_{2}Cl_{6}]^{-}$ (402.60)	6.78	0.39	4.26	6.71 (9.92)
437.56	$[Cu^{II}_{3}Cl_{7}]^{-}$ (437.56)	0	0	0.25	5.16 (14.79)
520.70	$[Cu^{I}Cu^{II}_{2}Cl_{6}(CH_{3}CN)_{2}(H_{2}O)_{2}]^{-}(520.67)$	0	0	3.43	5.70 (21.36)
572.43	$[Cu^{II}_4Cl_9]^-(572.43)$	0	0	0	0.74 (12.36)
655.54	$[Cu^{I} Cu^{II}_{3}Cl_{8}(CH_{3}CN)_{2}(H_{2}O)_{2}]^{-}(655.56)$	0	0	4.13	5.81 (24.52)

^a R is a convenient index of the match between the observed and calculated MS data. *R* factor was defined as $R = (\Sigma \{|Iobs - Ical | / Ical\})/100$. Iobs and Ical are the observed and calculated intensity of each single peak at m/z, respectively.¹

[1] S. A. R. Knox, J. W. Koepke, M. A. Andrews, H. D. Kaesz, J. Am. Chem. Soc. 1975, 97, 3942-3947.

Figure S6. The experimental and calculated MS spectra of different fragments.

Table S8. Hirshfeld surfaces mapped with d_{norm} (left) showing Shape-index (middle) and Curvedness (right) for the **CBC**. Hirshfeld surface analysis were performed using CrystalExplorer (Version 3.1), S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, University of Western Australia, 2012.

Table S9. Fingerprint plot for different interactions for **CBC** showing the percentage of contacts created to the total Hirshfeld surface area of the **CBC** molecules. d_i is the closest internal distance from a given point on the Hirshfeld surface; d_e is the closest external contact.

Inside + outside	90K	296K
All····All		
Н…Н 90К: 35.6% 296К: 32.4%		
Cl…H 90K: 36.6% 296K: 33.6%		
О…Н 90К: 3.9% 296К: 3.5%		
N…H 90K: 2.2% 296K: 2.1%		

Cu…H 90K: 2.1% 296K: 2.1%	
С…Н 90К: 12.1% 296К: 10.9%	
Cu…All 90K: 2.9% 296K: 2.6%	
Cu…Cl 90K: 1.6% 296K: 2.9%	

Compound	HOMO / a.u.	LUMO / a.u.	Picture	Energe / a.u.	
CuL ₂ (7)	Alpha -0.34008 Beta -0.33682	Alpha -0.14479 Beta -0.21850	to the second se	-1264.272529	
Cu ₂ L ₂ Cl(8)	Alpha -0.33528 Beta -0.33462	Alpha -0.16441 Beta -0.28352		-1921.314423	
Cu ₂ L ₃ (9)	Cu ₂ L ₃ (9) Alpha -0.31749 Beta -0.31333 Alp -0.1 Beta -0.2			-1994.343406	
Cu ₄ L ₄ Cl ₃ (10) Alpha -0.30822 Beta -0.30720 Alpha -0.12961 Beta -0.23439		Alpha -0.12961 Beta -0.23439		-4303.174299	

Table S10. Calculated orbitals energy for MS fragments CuL_2 (7), Cu_2L_2Cl (8), Cu_2L_3 (9), and $Cu_4L_4Cl_3$ (10).

Table S11. Selected bond lengths (Å) and angles (°) for the optimized MS fragments MS fragments CuL_2 (7), Cu_2L_2Cl (8), Cu_2L_3 (9), and $Cu_4L_4Cl_3$ (10).

CuL ₂ (7)							
Cu23-O40	1.894	Cu23-O17	2.178	Cu23-N39	1.947		
Cu23-N16	1.965	O40-Cu23-N39	86.03	O40-Cu23-N16	98.91		
O17-Cu23-N39	98.96	O17-Cu23-N16	77.29				

Cu ₂ L ₂ Cl (8)							
Cu22-O17	1.930	Cu22-O39	1.859	Cu22-N16	1.899		
Cu44-O17	2.009	Cu44-O39	2.060	Cu44-N38	1.961		
Cu44-Cl45	2.205	O17-Cu22-N16	86.00	O89-Cu22-O17	84.42		
Cl45-Cu44-O17	95.43	Cl45-Cu44-N38	106.08	O17-Cu44-O89	77.45		
O89-Cu44-N38	80.94						
Cu ₂ L ₃ (9)			6 017 Cu44				
Cu22-O61	1.958	Cu22-O17	1.932	Cu22-N60	1.988		
Cu22-N16	1.999	Cu44-O61	2.021	Cu44-O17	1.984		
Cu44-N38	1.981	Cu44-O39	1.898	N60-Cu22-N16	116.20		
N60-Cu22-O61	83.04	O61-Cu22-O17	80.59	N16-Cu22-O17	83.67		
O61-Cu44-O17	77.84	O61-Cu44-N38	108.23	N38-Cu44-O39	85.36		
O17-Cu44-O39	93.49						
Cu4L4Cl3 (10)							
Cu22-N16	1.954	Cu22-Cl91	2.380	Cu22-O17	1.987		
Cu22-O39	1.899	Cu44-O84	2.465	Cu44-Cl45	2.241		
Cu44-O17	1.996	Cu44-O39	2.058	Cu44-N38	2.001		

Cu67-N61	1.996	Cu67-O62	1.956	Cu67-O84	1.978
Cu67-Cl91	2.391	Cu67-O17	2.587	Cu89-O62	1.988
Cu89-Cl90	2.240	Cu89-N83	1.993	Cu89-O84	2.104
Cu89-Cl45	2.882	N16-Cu22-Cl91	111.94	Cl91-Cu22-O39	102.41
N16-Cu22-O17	83.05	O17-Cu22-O39	83.53	O17-Cu44-O39	79.37
N38-Cu44-O39	79.97	O17-Cu44-Cl45	96.30	N38-Cu44-Cl45	105.06
O39-Cu44-O84	100.38	O84-Cu44-Cl45	91.49	N61-Cu67-O62	82.44
O62-Cu67-O84	82.78	N61-Cu67-Cl91	100.78	O84-Cu67-Cl91	96.64
Cl91-Cu67-O17	87.90	O17-Cu67-O62	82.62	O62-Cu89-O84	78.89
N83-Cu89-O84	80.25	O62-Cu89-Cl90	96.14	N83-Cu89-Cl90	101.32
Cl45-Cu89-Cl90	106.57	Cl45-Cu89-O84	83.61		

Figure S7. Temperature dependence of $\chi_m T$ for CBC in a static field of 1 kOe.

Figure S8. (Left) The FC-ZFC magnetic susceptibility of CBC. (Right) The temperature dependence of ac magnetic susceptibility of CBC.

Figure S9. The isothermal magnetization of **CBC** at 2 K. The red line corresponds to the simulation employing the Brillouin function for S = 1/2 with the *g*-values from HF-EPR ($g_x = 2.24, g_y = 2.16$, and $g_z = 2.09$).

Figure S10. View of J value vs Cl2a…Cu1 distance. The J value increases with decreased Cl2a…Cu1 distance.

		M···M	Magnetic			
No.	Compound	distance	Exchange	Magnetism	Theoretica	Reference
		/ Å	Pathway		1	
[1]	Cu ₂ C ₂₀ H ₂₈ N ₄ Na ₄ O ₂₂	6.822(2)	Cu-N-Ph-N- Cu	F	DFT-BS	Angew. Chem. Int. Ed. 2001 , 40, 3039.
[2]	Co(bzi) ₂ (NSC) ₂	9.017(1)	π…π Stacking	F	DFT-BS	<i>Sci. Rep.</i> 2015 , <i>5</i> , 10761.
[3]	Cu ₂ (SCN) ₂ (PhenOH) (OCH ₃) ₂ (HOCH ₃) ₂	9.045(2)	π…π Stacking	F	DFT-BS	<i>Dalton</i> <i>Trans.</i> 2011 , 40, 1453.
[4]	MnC ₁₈ H ₂₀ N ₄ O ₈	4.453(3)	Hydrogen Bonding (N…H-O)	F	No	Dalton Trans. 2013 , 42, 4533.
[5]	$CuF_2(H_2O)_2(pvz)$	5.331(3) 5.351(3) 6.869(1)	Hydrogen Bonding (F…H-O)	AF	DFT-BS	Chem. Commun. 2013 , 49, 499.

Table S12. Examine part of the literatures about magnetic exchange via weak interaction. (F = Ferromagnetic, AF = Antiferromagnetic, BS = broken-symmetry).

[6]	iC ₁₂ H ₁₆ C ₁₂ N ₄	5.903(2)	Hydrogen Bonding (N-H…Cl)	AF	DFT-BS	Inorg. Chem. 2012 , 51, 5487.
[7]	[Cu(TPT)(H ₂ O) ₂ (BF ₄)] ⁺	7.441(5)	Hydrogen Bonding (F…H-O)	F	No	<i>CrystEng</i> <i>Comm</i> 2013 , <i>15</i> , 1836.
[8]	Cu ₃ C ₂₁ H ₄₈ F ₁₂ N ₆ O ₉ P ₂	6.202(1)	Hydrogen Bonding (O…H-O)	F	DFT-BS	Inorg. Chem. 2002 , 41, 5373.
[9]	nC ₄₅ H ₃₀ N ₄ Br	9.558(2)	Hydrogen Bonding (C-H…Br)	F	No	Inorg. Chem. 2008 , 47, 7202.
[10]	Cu ₂ C ₁₂ H ₁₀ Cl ₄ N ₄ OS	4.283(5)	Chloride Neighbor Cu-Cl…Cu	AF	DFT-BS	<i>Inorg.</i> <i>Chem.</i> 2004 , <i>43</i> , 1865.
[11]	Cu ₂ C ₂₄ H ₃₂ N ₁₂ O ₁₄	6.255(2)	Hydrogen Bonding	AF	DFT-BS	Inorg. Chem. 2011 , 50, 5696.

[12]	Cut 2.998Å	4.581(9)	Cu-Cl…Cu Cu-O- H…Cl-Cu	F	DFT-BS	This work
	$Cu(C_9H_{10}N_2O)Cl_2$					