DT-ART-09-2017-003585 (Revised)

Exploring the role of substituent in the hydrazone ligand of a family of μ -oxidodivanadium(V) hydrazone complexes on structure, DNA binding and anticancer activity

Debashis Patra,^a Shubhabrata Paul,^b Indira Majumder,^b Nayim Sepay,^c Sachinath Bera,^d Rita Kundu,^b Michael G. B. Drew,^e and Tapas Ghosh^{*,a}

Electronic Supporting Information (ESI)

Scheme S1. The structure of the ligands present in the complexes mentioned in Table 4.

Complex	VdW + H	Electr	Total	Final total	Torsional	Unbound	Estimated
	bond +	ostatic	(1)	internal energy	free energy	system's	free
	dissolving	energy		(kcal mol ⁻¹)	(kcal mol ⁻¹)	energy	energy of
	energy			(2)	(3)	(4)	binding
							[(1) + (2) +
							(3) - (4)]
							(kcal mol ⁻¹)
CT DNA							
1	-8.53	-0.53	-9.06	-3.04	1.79	-3.04	-7.27
2	-10.87	-0.11	-10.98	-2.60	2.39	-2.60	-8.59
HPV 18 DNA							
1	-9.64	0.02	-9.62	-3.47	1.79	-3.47	-7.82
2	-10.74	-0.09	-10.83	-3.52	2.39	-3.52	-8.44

Table S1 Different type of interactions between the CT-DNA and HPV 18 DNA with the complexes obtained from molecular docking study.

Fig. S1. Cyclic voltammogram of the complexes 1 and 2 in CH₂Cl₂ solution.

Fig. S2. X-band EPR spectra of complex 1A in CH₂Cl₂ solution (a) at 300 K and (b) at 77 K.

Fig. S3. Electronic spectra of 2A in CH_2Cl_2 solution.

Fig. S4. DFT optimized structure of 1 and 2.

Fig. S5. Absorption spectra of the complex **2** in the presence of increasing amounts of CT DNA. A fixed concentration of complex $(1.0 \times 10^{-5} \text{ M})$ was treated with increasing amounts of DNA over a range of $(1-10) \times 10^{-6} \text{ M}$. (inset: The linear fit of [DNA]/(ε_a - ε_f) *versus* [DNA]).

Fig. S6. Fluorescence spectra of (1st) $EB + 10^{-4}$ M DNA control and (2nd)-(11th) $EB + DNA + (1-10)\times10^{-5}$ M of complex **2**. The arrow shows that the intensity decreases with the increasing concentration of complex **2**. [Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) DNA complex caused by complex **2**].

Fig. S7 Circular dichroism spectra of 60 μ M CT-DNA in 10 mM Tris-HCl buffer (pH 7.2) titrated with of 10-40 μ M complex 2. The scan rate of 50 nm/min was maintained and cuvette with 1 mm path length was used.

Fig. S8 MTT assay showing cell viability of SiHa cells treated with complexes 1 and 2 (concentration range: $40-240 \mu$ M), bars represent SD of three independent replicates.

Fig. S9. Study of apoptosis by morphological changes in nuclei of SiHa cells. Marked circle showing the morphological changes in nuclei of SiHa cells observed on applying complex **1** in comparison to control.

Fig. S10. Docked pose of complex 2 showing interaction with CT DNA base pairs.

Fig. S11. Docked pose of complex 1 showing interaction with HPV 18 DNA base pairs.