Electronic Supplementary Information

Influence of Thiolate ligands on Luminescent Properties of Cycloplatinated(II) Complexes

Mahboubeh Jamshidi,^a Mojgan Babaghasabha,^b Hamid R. Shahsavari,^{b*} and S. Masoud Nabavizadeh,^{a*}

^aDepartment of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran.

^bDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Yousef Sobouti Blvd., Zanjan 45137-66731, Iran.

*Email: shahsavari@iasbs.ac.ir. (H.R.S.); nabavizadeh@shirazu.ac.ir. (S.M.N)

Contents:	Page
Figure S1. ¹ H NMR spectrum of 1a in dmso- d_6 at room temperature.	S3
Figure S2. ³¹ P{ ¹ H} NMR spectrum of 1a in dmso- d_6 at room temperature.	S3
Figure S3. ¹ H NMR spectrum of 2a in dmso- d_6 at room temperature.	S4
Figure S4. ³¹ P{ ¹ H} NMR spectrum of 2a in dmso- d_6 at room temperature.	S4
Figure S5. ¹ H NMR spectrum of 3a in dmso- d_6 at room temperature.	S5
Figure S6. ³¹ P{ ¹ H} NMR spectrum of 3a in dmso- d_6 at room temperature.	S5
Figure S7. ¹ H NMR spectrum of 3b in dmso- d_6 at room temperature.	S6
Figure S8. ³¹ P{ ¹ H} NMR spectrum of 3b in dmso- d_6 at room temperature.	S6
Table S1. Crystallographic and structure refinement data for 1a and 2a.	S 7
Table S2. Selected Distances [A] and Angles [°] for 1a, 2a and 1b.	S8
Figure S9. Aromatic ring including the κ^1 -S-SR moiety is approximately	S 8
perpendicular to the metal plane. The dihedral angle between the metal plane and	
the aryl ring is 82.88° for 1a and 63.24° for 2a .	
Figure 10. Crystal packing of complexes (a) 1a and (b) 2a are displaying the	S 9
intermolecular and intramolecular contacts. The supramolecular packing is formed	
by dimers supported by intermolecular $\pi \cdots \pi$ interactions involving two bzq ligands.	
Hydrogen atoms have been omitted for clarity.	
Table S3. Absorption data for A, B, 1-3 and some ligands in CH_2Cl_2 solutions and	S10
solid state at ambient temperature.	~
Figure S11. UV-vis spectra of 1a and 1b in CH ₂ Cl ₂ at 298 K.	S11
Figure S12. Absorption spectra of (a) A, 1a, 2a and 3a; (b) B, 1b, 2b and 3b in	S12
solid state at 298 K.	~
Table S4. Selected low-lying singlet and triplet excited states computed by TD-DFT	S13
with the orbitals involved and vertical excitation energies (nm) for 1-3.	<u> </u>
Table S5. Composition (%) of frontier MOs in the ground state (S_0) for complexes	S14
1-3 in gas phase.	~
Figure S13. DFT optimized S_0 (left) and T_1 (right) geometries of complex 3b with	S15
corresponding contribution of different fragments in frontier molecular orbitals	
obtained in S_0 and I_1 states.	016
Figure S14. Emission spectra of (a) Ia and (b) Ib in solid, PMMA and PS films at	816
298 K.	

Figure S2. ³¹P{¹H} NMR spectrum of **1a** in dmso- d_6 at room temperature.

Figure S4. ³¹P{¹H} NMR spectrum of **2a** in dmso- d_6 at room temperature.

Figure S8. ³¹P{¹H} NMR spectrum of **3b** in dmso- d_6 at room temperature.

Compound	1a	2a
Formula	C ₃₈ H ₃₀ Cl ₂ NPPtS	C ₃₆ H ₂₇ N ₂ PPtS
D_{calc} / g cm ⁻³	1.711	1.713
m/mm^{-1}	10.973	10.491
Formula Weight	829.65	745.71
Color	yellow	clear yellow
Shape	prism	prism
T/K	294.60(10)	123.01(10)
Crystal System	triclinic	monoclinic
Space Group	P-1	$P2_1/n$
a/Å	10.0395(2)	19.6231(3)
<i>b</i> /Å	10.9690(2)	8.23150(10)
<i>c</i> /Å	15.0116(3)	20.0833(3)
$a/^{\circ}$	85.1370(10)	90
$b/^{\circ}$	85.669(2)	116.938(2)
$g/^{\circ}$	78.299(2)	90
$V/Å^3$	1610.06(6)	2892.02(8)
Ζ	2	4
Z'	1	1
Wavelength/Å	1.54184	1.54184
Radiation type	CuK _a	CuKa
$Q_{min}/^{\circ}$	4.126	4.259
$Q_{max}/^{\circ}$	73.664	73.689
Measured Refl.	34429	60590
Independent Refl.	6395	5804
Reflections Used	6270	5460
R _{int}	0.0503	0.0426
Parameters	397	370
Restraints	0	0
Largest Peak	0.602	1.242
Deepest Hole	-0.980	-0.899
GooF	1.057	1.063
wR_2 (all data)	0.0452	0.0442
wR_2	0.0449	0.0433
R_1 (all data)	0.0192	0.0203
R_1	0.0187	0.0183
CCDC No.	1547213	1547214

 Table S1. Crystallographic and structure refinement data for 1a and 2a.

	1 a	2a	1b
Pt-S(1)	2.3689(6)	2.3651(6)	2.361(3)
Pt-N(1)	2.0951(19)	2.1073(19)	2.073(9)
Pt-C(1)	2.043(2)	2.048(2)	2.065(12)
Pt-P(1)	2.2285(6)	2.2228(6)	2.244(3)
C(1)-Pt-N(1)	80.84(9)	80.76(9)	81.9(4)
N(1)-Pt-S(1)	91.88(6)	90.63(6)	90.2(3)
S(1)-Pt-P(1)	93.00(2)	93.85(2)	90.95(11)
P(1)-Pt-C(1)	94.34(7)	94.75(7)	97.2(3)
Pt-S(1)-C(14)	107.58(8)	109.51(8)	107.1(5)

 Table S2. Selected Distances [A] and Angles [°] for 1a, 2a and 1b.

Figure S9. Aromatic ring including the κ^1 -S-SR moiety is approximately perpendicular to the metal plane. The dihedral angle between the metal plane and the aryl ring is 82.88° for 1a and 63.24° for 2a.

Figure 10. Crystal packing of complexes (a) 1a and (b) 2a showing the intermolecular and intramolecular contacts. The supramolecular packing is formed by dimers supported by intermolecular $\pi \cdots \pi$ interactions involving two bzq ligands. Hydrogen atoms are omitted for clarity.

Compound	media	$\lambda_{abs}/nm \ (\epsilon \ / \ 10^{-4} \ M^{-1} \ cm^{-1})$
Free bzqH	CH ₂ Cl ₂ (10 ⁻³ M)	296(4.49), 330(4.31), 345(4.37)
Free Na ⁺ Spy ⁻	CH ₂ Cl ₂ (2×10 ⁻⁵ M)	282(4.21), 359(3.80)
Free SpyH	CH ₂ Cl ₂ (2×10 ⁻⁵ M)	292(4.16), 375(3.73)
A	CH ₂ Cl ₂ (5×10 ⁻⁵ M)	235(4.59), 261(4.52), 305(4.16), 328(3.78),
		340(3.53), 394(3.25),416(3.53)
	Solid	229, 265, 315, 401, 418, 468, 593
B	$CH_2Cl_2 (5 \times 10^{-5}M)$	232(4.46), 287(4.26), 315(3.71), 327(3.55),
		328(3.28)
	Solid	230, 268, 289, 320, 382, 445, 478
1a	CH ₂ Cl ₂ (5×10 ⁻⁵ M)	244(4.70), 276(4.34), 287(4.35), 346(3.74),
		374(3.59), 399(3.39), 450(2.89)
	Solid	240, 268, 310, 410, 474, 621
1b	$CH_2Cl_2 (5 \times 10^{-5}M)$	231(4.83), 277(4.45), 326(3.97), 364(3.53),
		438(3.11)
	Solid	209, 234, 270, 325, 370, 463, 502
2a	CH ₂ Cl ₂ (5×10 ⁻⁵ M)	241(4.69), 287(4.34), 348(3.86), 397(3.42),
		432(3.15)
	Solid	234, 298, 370, 448, 535, 635
2b	CH ₂ Cl ₂ (5×10 ⁻⁵ M)	284(4.00), 326(3.94), 386(3.40), 417(3.18)
	Solid	205, 232, 271, 357, 451, 532
3 a	CH ₂ Cl ₂ (5×10 ⁻⁵ M)	234(4.79), 288(4.37), 347(3.79), 413(3.33)
	Solid	232, 295, 345, 382, 420, 418, 633
3b	CH ₂ Cl ₂ (5×10 ⁻⁵ M)	237(4.46), 274(4.52), 329(4.04), 392(3.34)
	Solid	229, 273, 330, 375, 443

Table S3. Absorption data for A, B, 1-3 and some ligands in CH_2Cl_2 solutions and solid state at ambient temperature.

^aData at high concentration (10^{-3} M) are similar to those at low concentration.

Figure S11. UV-vis spectra of 1a and 1b in CH_2Cl_2 at 298 K (the insets show the expansion of the region of the low-energy bands).

Figure S12. Absorption spectra of (a) A, 1a, 2a and 3a; (b) B, 1b, 2b and 3b in solid state at 298 K.

	State	λ_{exc} (calc.)/nm	f	Main Transition (Percentage Contribution)				
1a	T ₁	621		HOMO→LUMO (98)				
	S_1	572	0.003	HOMO→LUMO (98)				
	S ₂	441	0.003	HOMO \rightarrow LUMO+1 (95)				
	S ₃	429	0.013	HOMO→LUMO+3 (77)				
2a	T ₁	540		HOMO→LUMO (98)				
	S_1	514	0.002	HOMO→LUMO (98)				
	S ₂	405	0.003	HOMO \rightarrow LUMO+1 (95)				
	S ₃	394	0.004	HOMO→LUMO+3 (84)				
	S ₄	388	0.043	HOMO-1→LUMO (92)				
3 a	T ₁	480		HOMO→LUMO (90)				
	S_1	474	0.002	HOMO→LUMO (98)				
	S ₂	378	0.038	HOMO-1→LUMO (92)				
	S ₃	379	0.004	HOMO→LUMO (90)				
1b	T ₁	607		HOMO→LUMO (98)				
	S_1	522	0.005	HOMO→LUMO (98)				
	S ₂	433	0.007	HOMO→LUMO+3 (70)				
	S ₃	419	0.002	HOMO \rightarrow LUMO+2 (52)				
				HOMO→LUMO+1 (26)				
2b	T_1			HOMO→LUMO (98)				
	S ₁	523	0.003	HOMO→LUMO (98)				
	S ₂	414	0.004	HOMO→LUMO+3 (72)				
	S ₃	401	0.002	HOMO \rightarrow LUMO+2 (44)				
				HOMO→LUMO+1 (32)				
3 b	T_1			HOMO→LUMO (77)				
	\mathbf{S}_1	454	0.003	HOMO→LUMO (98)				
	S ₂	372	0.000	HOMO→LUMO+3 (70)				
	S ₃	369	0.046	HOMO-1→LUMO (82)				

Table S4. Selected low-lying singlet and triplet excited states computed by TD-DFT with the orbitals involved and vertical excitation energies (nm) for **1-3**.

	E (eV)	Pt	bzq	SR	PPh ₃		E (eV)	Pt	рру	SR	PPh ₃
1a						1b					
L+3	-0.781	26	11	6	57	L+3	-0.770	27	13	5	55
L+2	-0.885	9	5	0	87	L+2	-0.848	2	71	2	26
L+1	-1.081	3	88	3	5	L+1	-0.901	8	15	0	77
LUMO	-1.673	3	93	1	4	LUMO	-1.552	5	87	2	6
HOMO	-4.452	8	8	81	3	HOMO	-4.418	7	7	82	3
H-1	-5.465	23	43	32	2	H-1	-5.563	23	33	42	2
H-2	-5.689	13	48	37	3	H-2	-5.773	25	49	25	2
H-3	-6.022	55	4	36	5	H-3	-6.025	37	2	57	3
			•					•			
2a						2b					
L+3	-0.684	28	12	5	55	L+3	-0.797	27	14	5	53
L+2	-0.797	6	4	0	90	L+2	-0.890	2	68	1	29
L+1	-1.013	3	90	3	4	L+1	-0.938	7	15	1	78
LUMO	-1.611	3	93	1	3	LUMO	-1.593	5	87	2	6
HOMO	-4.630	8	6	83	3	HOMO	-4.592	7	6	83	3
H-1	-5.462	31	61	7	1	H-1	-5.676	35	41	23	1
H-2	-5.772	63	2	30	6	H-2	-5.786	12	34	52	2
H-3	-5.895	10	42	45	3	H-3	-6.039	2	13	84	1
3a						3 b					
L+3	-0.729	27	11	6	56	L+3	-0.710	27	10	6	57
L+2	-0.842	7	4	1	88	L+2	-0.815	2	36	1	61
L+1	-1.041	3	90	3	4	L+1	-0.852	7	18	0	75
LUMO	-1.640	3	93	1	3	LUMO	-1.505	5	68	2	26
HOMO	-4.878	10	6	81	3	HOMO	-4.871	9	5	81	4
H-1	-5.495	31	61	7	1	H-1	-5.603	43	34	9	14
H-2	-5.711	22	14	61	4	H-2	-5.698	21	11	63	5
H-3	-5.927	50	28	17	4	H-3	-5.904	52	23	16	9

Table S5. Composition (%) of frontier MOs in the ground state (S_0) for complexes 1-3 in gas phase.

Figure S13. DFT optimized S_0 (left) and T_1 (right) geometries of complex **3b** with corresponding contribution of different fragments in frontier molecular orbitals obtained in S_0 and T_1 states.

Figure S14. Emission spectra of (a) 1a and (b) 1b in solid, PMMA and PS films at 298 K.