Electronic Supplementary Information (ESI)

Novel Double Layer Lanthanide Metal-Organic Networks for Sensing Applications

Jun Wang,^a Qiang-sheng Zhang,^a Wei Dou,^a Alexander M. Kirillov,^b Wei-sheng Liu,^a Cong Xu,^a Cai-ling Xu,^a Ran Fang^{*a} and Li-zi Yang^{*a}

^a State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China;

^b Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.

E-mail: fangr@lzu.edu.cn, yanglz@lzu.edu.cn

Th1—Th1 ⁱ	3 9054 (9)	Th1-01	2 345 (7)	Th1—O2 ⁱ	2 326 (7)
Tb1 -03^{ii}	2 408 (6)	Tb1 -04^{ii}	2.3 (7)	Tb1-07	2.320(7) 2 473(7)
Tb1 -08^{i}	2328(7)	C17—Tb1 ⁱⁱⁱ	2.100(0) 2.825(10)	Tb108	2 538 (6)
Tb1—N1	2.528 (8)	Th1 $-N2$	2.591 (8)	Tb1—C17 ⁱⁱ	2.836(0) 2.825(10)
Tb1—C29	2.820(0) 2.881(10)	Ω^2 —Th1 ⁱ	2.391(0) 2.326(7)	O3-Tb1 ⁱⁱⁱ	2.625 (10)
04—Th1 ⁱⁱⁱ	2 488 (6)	O8—Tb1 ⁱ	2.328(7)	O1—Tb1—Tb1 ⁱ	<u>69</u> 74 (15)
$O1$ —Tb1— $O3^{ii}$	129 1 (2)	$01 - Tb1 - 04^{ii}$	2.520 (1) 76 3 (2)	01 - Tb1 - 07	77 8 (2)
01—Tb1— 08	71 7 (2)	O1—Tb1—N1	79.5 (3)	O1—Tb1—N2	1330(3)
$O1$ —Tb1— $C17^{ii}$	102.8 (3)	O1—Tb1—C29	72.4 (2)	$O2^{i}$ Tb1—Tb1 ⁱ	68.74 (15)
$O2^{i}$ —Tb1—O1	138.5 (2)	$O2^{i}$ —Tb1— $O3^{ii}$	78.8 (2)	$O2^{i}$ Tb1 $-O4^{ii}$	119.2 (2)
$O2^{i}$ Tb1 $O7$	98.3 (3)	$O2^{i}$ Tb1 $O2$	73.9 (2)	$O2^{i}$ Tb1 $O2^{i}$	72.2 (2)
O2 ⁱ —Tb1—N1	140.1 (2)	$O2^{i}$ Tb1 $N2$	77.1 (3)	O3—C17—Tb1 ⁱⁱⁱ	58.1 (5)
O2 ⁱ —Tb1—C17 ⁱⁱ	98.5 (3)	O2 ⁱ —Tb1—C29	86.5 (3)	O4—C17—Tb1 ⁱⁱⁱ	61.7 (5)
O3 ⁱⁱ —Tb1—Tb1 ⁱ	126.74 (17)	O3 ⁱⁱ —Tb1—O4 ⁱⁱ	53.0 (2)	O3 ⁱⁱ —Tb1—O7	141.2 (2)
C16—C17—Tb1 ⁱⁱⁱ	174.8 (7)	O3 ⁱⁱ —Tb1—O8	151.9 (2)	O3 ⁱⁱ —Tb1—N1	83.0 (3)
O3 ⁱⁱ —Tb1—N2	76.8 (2)	O3 ⁱⁱ —Tb1—C17 ⁱⁱ	26.5 (2)	O3 ⁱⁱ —Tb1—C29	158.0 (2)
O4 ⁱⁱ —Tb1—Tb1 ⁱ	109.80 (15)	O4 ⁱⁱ —Tb1—O8	139.3 (2)	O4 ⁱⁱ —Tb1—N1	73.9 (2)
O4 ⁱⁱ —Tb1—N2	117.4 (2)	O4 ⁱⁱ —Tb1—C17 ⁱⁱ	26.6 (2)	O4 ⁱⁱ —Tb1—C29	148.6 (3)
O7—Tb1—Tb1 ⁱ	85.90 (16)	O7—Tb1—O4 ⁱⁱ	142.3 (2)	O7—Tb1—O8	51.5 (2)
O7—Tb1—N1	74.9 (3)	O7—Tb1—N2	65.0 (2)	O7—Tb1—C17 ⁱⁱ	152.8 (3)
O7—Tb1—C29	25.6 (3)	O8—Tb1—Tb1 ⁱ	34.84 (15)	O8 ⁱ —Tb1—Tb1 ⁱ	38.51 (15)
O8 ⁱ —Tb1—O1	76.2 (2)	O8i—Tb1—O3 ⁱⁱ	92.4 (2)	O8 ⁱ —Tb1—O4 ⁱⁱ	75.1 (2)
O8 ⁱ —Tb1—O7	124.0 (2)	O8 ⁱ —Tb1—O8	73.4 (2)	O8 ⁱ —Tb1—N1	144.1 (2)
O8 ⁱ —Tb1—N2	148.9 (3)	O8—Tb1—N2	102.8 (2)	O8—Tb1—C17 ⁱⁱ	155.0 (2)
O8 ⁱ —Tb1—C17 ⁱⁱ	81.7 (2)	O8 ⁱ —Tb1—C29	98.7 (3)	O8—Tb1—C29	25.9 (3)
N1—Tb1—Tb1 ⁱ	146.6 (2)	N1—Tb1—O8	122.7 (2)	N1—Tb1—N2	64.3 (3)
N1—Tb1—C17 ⁱⁱ	78.5 (3)	N1—Tb1—C29	98.5 (3)	O7—C29—Tb1	58.6 (5)
N2—Tb1—Tb1 ⁱ	130.90 (18)	N2—Tb1—C17 ⁱⁱ	98.4 (3)	N2—Tb1—C29	84.0 (3)
O8—C29—Tb1	61.7 (5)	C17 ⁱⁱ —Tb1—Tb1 ⁱ	120.18 (19)	C17 ⁱⁱ —Tb1—C29	174.8 (3)
C30—C29—Tb1	175.8 (8)	C29—Tb1—Tb1 ⁱ	60.4 (2)	C13—O1—Tb1	136.7 (6)
C13—O2—Tb1 ⁱ	139.6 (6)	C17—O3—Tb1 ⁱⁱⁱ	95.4 (6)	C17—O4—Tb1 ⁱⁱⁱ	91.8 (5)
C29—O7—Tb1	95.8 (6)	Tb1 ⁱ —O8—Tb1	106.6 (2)	C29—O8—Tb1	92.4 (6)
C29—O8—Tb1 ⁱ	157.3 (6)	C1—N1—Tb1	121.9 (7)	C1—N1—C5	117.1 (9)
C5—N1—Tb1	120.4 (7)	C6—N2—Tb1	117.4 (7)	C12—N2—Tb1	122.1 (7)

Table S1. Selected Bond Lengths (Å) and Angles (°) for 1.

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1/2, -y+1/2, z; (iii) x-1/2, -y+1/2, z.

Eu1—Eu1 ⁱ	3.9341 (9)	Eu1—O1	2.375 (5)	Eu1—N1	2.562 (8)
Eu1—N2	2.600 (8)	Eu1—O7 ⁱ	2.345 (6)	Eu1—O7	2.569 (6)
O2—Eu1 ⁱ	2.358 (6)	Eu1—O8	2.504 (7)	Eu1—C17	2.914 (10)
Eu1—O2 ⁱ	2.359 (6)	Eu1—O3 ⁱⁱ	2.445 (6)	Eu1—O4 ⁱⁱ	2.512 (6)
Eu1—C8 ⁱⁱ	2.832 (9)	O3—Eu1 ⁱⁱⁱ	2.445 (6)	O4—Eu1 ⁱⁱⁱ	2.512 (6)
O7—Eu1 ⁱ	2.345 (6)	C8—Eu1 ⁱⁱⁱ	2.832 (9)	O1—Eu1—Eu1 ⁱ	69.47 (15)
O1—Eu1—N1	79.6 (2)	C18—C17—Eu1	176.5 (7)	O1—Eu1—N2	132.9 (2)
O1—Eu1—O7	71.8 (2)	O1—Eu1—O8	78.1 (2)	O1—Eu1—C17	72.5 (2)
O1—Eu1—O3 ⁱⁱ	128.9 (2)	O1—Eu1—O4 ⁱⁱ	76.3 (2)	O1—Eu1—C8 ⁱⁱ	102.7 (2)
N1—Eu1—Eu1 ⁱ	146.43 (16)	N1—Eu1—N2	64.3 (2)	N1—Eu1—O7	122.7 (2)
N1—Eu1—C17	98.3 (3)	N1—Eu1—C8 ⁱⁱ	78.5 (3)	N2—Eu1—Eu1 ⁱ	130.87 (19)
N2—Eu1—C17	83.5 (2)	N2—Eu1—C8 ⁱⁱ	98.7 (2)	O7—Eu1—Eu1 ⁱ	34.91 (14)
O7 ⁱ —Eu1—Eu1 ⁱ	38.81 (16)	O7 ⁱ —Eu1—O1	75.8 (2)	O7 ⁱ —Eu1—N1	143.7 (2)
O7 ⁱ —Eu1—N2	149.4 (2)	O7—Eu1—N2	102.5 (2)	O7 ⁱ —Eu1—O7	73.7 (2)
O7 ⁱ —Eu1—O8	124.0 (2)	07 ⁱ —Eu1—C17	99.3 (3)	O7—Eu1—C17	26.1 (2)
O7 ⁱ —Eu1—O2 ⁱ	72.8 (2)	O7 ⁱ —Eu1—O3 ⁱⁱ	92.4 (2)	O7 ⁱ —Eu1—O4 ⁱⁱ	75.2 (2)
O7 ⁱ —Eu1—C8 ⁱⁱ	81.4 (2)	O7—Eu1—C8 ⁱⁱ	155.1 (2)	O8—Eu1—Eu1 ⁱ	85.62 (16)
O8—Eu1—N1	75.3 (2)	O8—Eu1—N2	64.7 (2)	O8—Eu1—O7	51.2 (2)
O8—Eu1—C17	25.0 (2)	C1—O2—Eu1 ⁱ	137.9 (6)	O8—Eu1—O4 ⁱⁱ	142.3 (2)
O8—Eu1—C8 ⁱⁱ	153.1 (2)	C17—Eu1—Eu1 ⁱ	60.64 (19)	O2 ⁱ —Eu1—Eu1 ⁱ	68.93 (15)
O2 ⁱ —Eu1—O1	138.4 (2)	O2 ⁱ —Eu1—N1	140.0 (2)	O2 ⁱ —Eu1—N2	77.0 (2)
O2 ⁱ —Eu1—O7	73.7 (2)	O2 ⁱ —Eu1—O8	97.7 (2)	O2 ⁱ —Eu1—C17	86.4 (2)
O2 ⁱ —Eu1—O3 ⁱⁱ	79.3 (2)	O2 ⁱ —Eu1—O4 ⁱⁱ	119.8 (2)	O2 ⁱ —Eu1—C8 ⁱⁱ	98.8 (2)
C8—O3—Eu1 ⁱⁱⁱ	94.2 (5)	O3 ⁱⁱ —Eu1—Eu1 ⁱ	127.11 (15)	C8—O4—Eu1 ⁱⁱⁱ	91.1 (5)
O3 ⁱⁱ —Eu1—N1	82.6 (2)	C4—C8—Eu1 ⁱⁱⁱ	173.8 (6)	O3 ⁱⁱ —Eu1—N2	77.1 (2)
O3—C8—Eu1 ⁱⁱⁱ	59.4 (5)	O3 ⁱⁱ —Eu1—O7	152.3 (2)	O3 ⁱⁱ —Eu1—O8	141.2 (2)
O4—C8—Eu1 ⁱⁱⁱ	62.5 (5)	O3 ⁱⁱ —Eu1—C17	158.0 (2)	O3 ⁱⁱ —Eu1—O4 ⁱⁱ	52.72 (19)
O3 ⁱⁱ —Eu1—C8 ⁱⁱ	26.4 (2)	O4 ⁱⁱ —Eu1—Eu1 ⁱ	110.29 (14)	O4 ⁱⁱ —Eu1—N1	73.3 (2)
O4 ⁱⁱ —Eu1—N2	117.2 (2)	O4 ⁱⁱ —Eu1—O7	139.79 (19)	O4 ⁱⁱ —Eu1—C17	148.6 (2)
O4 ⁱⁱ —Eu1—C8 ⁱⁱ	26.4 (2)	C8 ⁱⁱ —Eu1—Eu1 ⁱ	120.20 (18)	C8 ⁱⁱ —Eu1—C17	174.7 (2)
C1—O1—Eu1	136.3 (6)	C33—N1—Eu1	122.1 (6)	C43—N1—Eu1	118.0 (7)
C42—N2—Eu1	123.6 (7)	C44—N2—Eu1	117.4 (6)	Eu1 ⁱ —O7—Eu1	106.3 (2)
C17—O7—Eu1 ⁱ	157.7 (6)	C17—O7—Eu1	92.1 (6)	C17—O8—Eu1	96.3 (6)
O7—C17—Eu1	61.7 (5)	O8—C17—Eu1	58.6 (5)		

 Table S2. Selected Bond Lengths (Å) and Angles (°) for 2.

Symmetry codes: (i) -x, -y+1, -z; (ii) x+1/2, -y+3/2, z; (iii) x-1/2, -y+3/2, z.

Fig. S1. PXRD patterns of 1 (simulated from the single crystal X-ray data) and assynthesized samples of 1 and 2.

Fig. S2. TGA curves for compounds 1 and 2.

Fig. S3. Luminescence spectra of the dispersion of **1** in ethanol in the presence of various amines (10⁻² M). Excitation: 320 nm.

Fig. S4. PXRD patterns of 1 before and after being immersed in ethanol solutions of various amines.

Fig. S5. FT-IR spectra of 1 (a) and 2 (b) before and after being immersed in ethanol solutions of *p*-phenylenediamine or benzidine.

Fig. S6. Luminescence sensing selectivity measurements of **1** (dispersion in ethanol) toward *p*-phenylenediamine and benzidine analytes. (a, b) Luminescence spectra and bar diagrams of **1** in the presence of benzidine (10^{-6} M, red line) with and without added *p*-phenylenediamine (10^{-3} M, blue line). (c, d) Luminescence spectra and bar diagrams of **1** in the presence of *p*-phenylenediamine (10^{-6} M, red line) with and without added benzidine (10^{-6} M, blue line).

Fig. S7. (a, b) Luminescence spectra and relative intensities of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition (616 nm band) of the dispersion of **2** in ethanol and in the presence of various amine analytes (excitation: 348 nm). (c,d) Linear relation between the quenching efficiency and the concentration of benzidine, *p*-phenylenediamine (0.01–1.0 mM) for a dispersion of **2**.

Fig. S8. PXRD patterns of 1 before and after being immersed in various organic solvents.

Fig. S9. Recycling luminescence sensing experiments. Quenching ability of regenerated samples of **1** (dispersion in EtOH) in the presence of (a) *p*-phenylenediamine (10 mM) and (b) benzidine (10 mM).