Supporting Information

High quality and high-performance adsorption of Congo red using

as-grown MWCNT synthesis over Co-MOF as a catalyst precursor

via CVD method

Hong-Yan Lin,*a Jing Zhao,a Ge Song, Jian Luan*b, Xiang-Xiang Liu,a Guo-Cheng Liua

a. Department of Chemistry, Bohai University, Jinzhou 121000, P. R. China

E-mail: linhongyan_2005@126.com

b. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China

E-mail: jluan@imr.ac.cn

Table S1 Selected bond distances (Å) and angles (°) for complex 1

Commence at mark and as #1	1		
O(1)–Co(1)–N(3)	88.92(6)		
O(1)#1-Co(1)-N(3)	91.08(6)	N(3)-Co(1)-N(3)#1	180
N(1)#1-Co(1)-N(1)	180	N(1)-Co(1)-N(3)#1	89.87(6)
O(1)–Co(1)–N(1)	79.32(6)	N(1)#1-Co(1)-N(3)#1	90.13(6)
O(1)#1-Co(1)-N(1)	100.68(6)	O(1)-Co(1)-N(3)#1	91.08(6)
O(1)-Co(1)-N(1)#1	100.68(6)	O(1)#1-Co(1)-N(3)#1	88.92(6)
O(1)#1-Co(1)-N(1)#1	79.32(6)	N(1)-Co(1)-N(3)	90.13(6)
O(1)#1-Co(1)-O(1)	180	N(1)#1-Co(1)-N(3)	89.87(6)
Co(1)–N(3)	2.2800(16)	Co(1)-N(3)#1	2.2801(16)
Co(1)–N(1)	2.1010(15)	Co(1)–N(1)#1	2.1010(15)
Co(1)-O(1)	2.0475(13)	Co(1)-O(1)#1	2.0475(13)

Symmetry code: #1 - x, -y, -z + 1

Table	S2 Hydrog	gen bonding	geometries	(Å, '	°) of c	omplex 1
-------	-----------	-------------	------------	-------	---------	----------

D–H···A	D–H	Н…А	D····A	D–H···A	
O1W–H1WA…O2	0.85(3)	1.91(3)	2.725(3)	161(3)	
N2–H2–O1W i	0.90(2)	1.91(2)	2.801(3)	172(2)	
<u>G</u> (1) 1/0 (1/0 1/0				

Symmetry code: $\frac{1}{2} \frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$

Supporting Information

Fig. S1 View of 3D supramolecular architecture formed by $N-H\cdots O$ and $O-H\cdots O$ hydrogen-bonding interactions (H bonds: dotted line) in **1**.

Fig. S2 Tipical MWCNT diameter distributions and its Gaussian fit with the mean diameter of 47.7 nm.

Fig. S3 UV-*vis* spectra of CR (a) and MB (b) solution after different adsorption times with the Co-MOF.

Fig. S4 UV-vis spectra of MB solution after different adsorption times with the MWCNT.

Fig. S5 Molecular formulae of (a) CR and (b) MB.

Fig. S6 Nitrogen adsorption and desorption isotherms of MWCNTs. The inset shows the pore size distribution.

Fig. S7 (a) UV-vis spectra of CR solution after different desorption times with the MWCNT; (b) The desorption amount of CR at different times with the MWCNT.

Sample	Dye	After adsorption After desorption	
	CR	~801 mg g ⁻¹	~780 mg g ⁻¹
Co-MOF			
and the second	MB	$\sim 10 \text{ mg g}^{-1}$	
	CR	~1639 mg g ⁻¹	~1600 mg g ⁻¹
MWCNT			
	MB	~12 mg g ⁻¹	

Scheme S1 The adsorption amount and color change of dye solutions.

Supporting Information

Adsorbents	Adsorption capacity (mg g ⁻¹)	Ref.
BUC-17	4923	S 1
Hypercrosslinked poly(styrene-co- divinylbenzene) resin	2326	S2
MWCNT	1639	This work
CNT/Mg(Al)O nanocomposites	1250	S 3
Functionalized CNT	882	S4
Porous Pr(OH) ₃ nanostructures	837	S5
Co-MOF	801	This work
$[Ag_4(dpe)_4] \cdot (butca) \cdot 13H_2O$	739	S 6
MIL-100(Fe)	714	S 7
$\{[Cu_3(btb)_3(nbta)_2] \cdot (H_2O)\}_n \text{ complex}$	656	S 8
Clay mixture	575	S 9
Activated carbon fibers	557	S10
LDH-Fe ₃ O ₄ nanohybrids	505	S11
CS/CNT beads	450	S12
Activated carbon	300	S13
MgO(111) nanoplates	297	S14
FeOOH hollow spheres	275	S15
CoFe ₂ O ₄	245	S16
HTMAB-modified attapulgite	189	S17
Coal-based mesoporous activated carbon	189	S18
Functionalized MWNTs	148	S19
Chitosan hydrobeads	92.59	S20
Magnetic (Fe ₃ O ₄) cellulose activated carbon	66.09	S21
Acid-activated bentonite	61.5	S22

Table S3 A comparison of the CR removal performance of different materials

References:

[S1] J. J. Li, C. C. Wang, H. F. Fu, J. R. Cui, P. Xu, J. Guo, J. R. Li, Dalton Trans. 46 (2017) 10197.

[S2] Y. Li, R. Cao, X. Wu, J. Huang, S. Deng, X. Lu, J. Colloid Interf. Sci. 400 (2013)78.

[S3] S. X. Yang, L. Y. Wang, X. D. Zhang, W. J. Yang, G. L. Song, Chem. Eng. J. 275 (2015) 321.

[S4] S. Yang, L. Wang, S. Yue, X. Guo, Y. Song, J. He, RSC Adv. 3 (2013) 16990.

[S5] T. Zhai, S. Xie, X. Lu, L. Xiang, M. Yu, W. Li, C. Liang, C. Mo, F. Zeng, T.

Luan, Y. Tong, Langmuir 28 (2012) 11078.

[S6] J. Zhang, C. C. Wang, P. Wang, Y. L. Cao, RSC Adv. 6 (2016) 73595.

[S7] S. E. Moradi, S. Dadfarnia, A. M. Haji Shabani, S. Emami, Desalin. Water Treat. 56 (2014) 709.

- [S8] X. X. Wang, Z. X. Li, B. Yu, K. Van Hecke, G. H. Cui, Inorg. Chem. Commun. 54 (2015) 9.
- [S9] V. Vimonses, B. Jin, C. W. K. Chow, C. Saint, J. Hazard. Mater. 171 (2009) 941.
- [S10] C. Pelekani, V. L. Snoeyink, Carbon 39 (2001) 25.
- [S11] C. Chen, P. Gunawan, R. Xu, J. Mater. Chem. 21 (2011) 1218.
- [S12] S. Chatterjee, M. W. Lee, S. H. Woo, Bioresour. Technol. 101 (2010) 1800.
- [S13] M. K. Purkait, A. Maiti, S. DasGupta, S. De, J. Hazard. Mater. 145 (2007) 287.
- [S14] J. Hu, Z. Song, L. Chen, H. Yang, J. Li, R. Richards, J. Chem. Eng. Data 55 (2010) 3742.
- [S15] B. Wang, H. Wu, L. Yu, R. Xu, T. T. Lim, X. W. Lou, Adv. Mater. 24 (2012) 1111.
- [S16] L. Wang, J. Li, Y. Wang, L. Zhao, Q. Jiang, Chem. Eng. J. 181–182 (2012) 72.
- [S17] H. Chen, J. Zhao, Adsorption 15 (2009) 381.
- [S18] E. Lorencgrabowska, G. Gryglewicz, Dyes and Pigments 74 (2007) 34.
- [S19] A. K. Mishra, T. Arockiadoss, S. Ramaprabhu, Chem. Eng. J. 162 (2010) 1026.
- [S20] S. Chatterjee, S. Chatterjee, B. P. Chatterjee, A. R. Das, A. K. Guha, Colloid. Surface. A 299 (2007) 146.
- [S21] M. Toor, B. Jin, Chem. Eng. J. 187 (2012) 79.
- [S22] S. Chatterjee, S. Chatterjee, B. P. Chatterjee, A. K. Guha, Colloid. Surface. A 299 (2007) 146.