Electronic Supporting Information for

Magnetic properties of $Ln_2CoGe_4O_{12}$ and $LnBCoGe_4O_{12}$ (Ln = Gd, Tb, Dy, Ho, Er; B = Sc, Lu))

Diming Xu¹, Maxim Avdeev^{2,3}, Peter D. Battle^{1,*} and D. H. Ryan⁴

- Inorganic Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QR, U. K.
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
- 3. School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Physics Department and Centre for the Physics of Materials, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8, Canada
- * to whom correspondence should be addressed: peter.battle@chem.ox.ac.uk

Figure S1 (a) Observed (red) and calculated (green) neutron diffraction profiles for $Tb_2CoGe_4O_{12}$ recorded using $\lambda = 2.4397$ Å at 300 K; a difference curve is also shown. Upper and lower vertical markers indicate magnetic and structural reflection positions, respectively.

(b) Observed (red) and calculated (green) neutron diffraction profiles for $Tb_2CoGe_4O_{12}$ recorded using $\lambda = 1.622$ Å at 1.5 K; a difference curve is also shown. Upper and lower vertical markers indicate magnetic and structural reflection positions, respectively.

(c)Observed (red) and calculated (green) neutron diffraction profiles for TbScCoGe₄O₁₂ recorded using $\lambda = 1.622$ Å at 1.5 K; a difference curve is also shown. Upper and lower vertical markers indicate magnetic and structural reflection positions, respectively.

Figure S2 Expanded view of the fits to the low-angle regions of the 1.5 K diffraction profiles of (a) Tb₂ScCoGe₄O₁₂ and (b) TbScCoGe₄O₁₂.

(a) Tb₂CoGe₄O₁₂ at 300 K, λ = 2.4397 Å

(b) $Tb_2CoGe_4O_{12}$ at 1.5 K, $\lambda = 1.622$

(c) TbScCoGe₄O₁₂ at 1.5 K, $\lambda = 1.622$ Å

Figure S1

(a)

Figure S2