SUPPORTING INFORMATION

Figure S1. ESI-MS spectrum of the $\left[\mathrm{Ru}(\mathrm{phtpy}) \mathrm{Cl}_{3}\right]$ precursor complex, showing the molecular peak corresponding to the $\left[\mathrm{Ru}^{\mathrm{II}} \mathrm{Cl}(\mathrm{phtpy})\right]^{+}$species.

Figure S2. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right)$ spectrum of the main fraction "A" (Figure 1b) of a typical silica gel column chromatography separation process and respective peak assignments. The spectrum is consistent with the $\left[\mathrm{Ru}(\text { phtpy })_{2}\right]^{2+}$ complex.

Figure S3: a) Evolution of the UV-Vis spectrum as a function of time after addition of zinc amalgam, $\mathrm{Zn}(\mathrm{Hg})$, into a solution of $\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{phtpy}) \mathrm{Cl}_{3}\right]$ in MeOH at $50^{\circ} \mathrm{C}$ under N_{2} atmosphere, generating a spectral profile similar to that shown in Fig. 2a. b) Spectra of $\left[\mathrm{Ru}^{\mathrm{III}}(\right.$ phtpy $\left.) \mathrm{L}_{1} \mathrm{~L}_{2} \mathrm{~L}_{3}\right]$ derivatives (where $\mathrm{L}_{\mathrm{n}}=$ solvent or Cl^{-}) generated upon addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution into the solution in (a) after 150 min (magenta line of Figure S3a) compared with that of $\left[\mathrm{Ru}(\mathrm{phtpy})_{2}\right]^{2+}$ (blue line) in MeOH .

Figure S4. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (300 MHz) of the $\left[\mathrm{Ru}(\mathrm{phtpy}) \mathrm{Cl}_{3}\right]$ complex in DMSO- d_{6}, showing signals corresponding to the $\mathrm{Ru}(\mathrm{III})$ and $\mathrm{Ru}(\mathrm{II})$ species (labeled with stars), and the presence of $\left[\mathrm{Ru}^{\mathrm{II}}(\mathrm{phtpy})_{2}\right]^{2+}$ complex as impurity (dots). The contrasting spectrum of free phtpy ligand in dmso- d_{6} is shown in Figure 4.

Table S1. Representative experiments carried out for preparation of the binuclear $\left[\left\{\mathrm{Ru}(\text { phtpy }) \mathrm{Cl}_{2}\left(\mathrm{dpimH}_{2}\right)\right]^{2+}\right.$ complex by reaction of $\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{phtpy}) \mathrm{Cl}_{3}\right]$ precursor and the dpimbH 2 ligand in a 2:1 stoichiometric ratio.

Experiment	Solvent	Eq. LiCl	T $\left({ }^{\circ} \mathbf{C}\right)$	Time (hours)	Reducing Agent	Result
1	$\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$	10	reflux	4	NEM	mixture
2	$\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$	3	70	0.5	NEM	mixture
3	$\mathrm{DMF} *$	0	54	2	NEM	mixture
4	$\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$	3	R.T.	19	$\mathrm{TEA} * *$	mixture
5	$\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$	3	40	6	TEA	mixture
6	EtOH	0	37	12	TEA	mixture
7	$\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} * * *$	1.5	80	2	TEA	mixture

- Using the aqua complex $\left[\mathrm{RuCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\right.$ phtpy $\left.)\right]$
** Triethylamine (TEA)
**Slow addition of $\left[\mathrm{RuCl}_{3}\right.$ (phtpy) $]$ to the reaction mixture.

Figure S5. UV-vis spectra of some representative experiments among those listed in table S1 relative to the attempts for preparation of $\left[\left\{\mathrm{Ru}(\mathrm{phtpy}) \mathrm{Cl}_{2}\left(\mathrm{dpimH}_{2}\right)\right]^{2+}\right.$ complexes, using a $2: 1$ stoichiometric ratio of the $\left[\mathrm{Ru}^{\text {III }}\right.$ (phtpy) $\left.\mathrm{Cl}_{3}\right]$ complex and the dpimbH ${ }_{2}$ ligand.

