Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Layered double hydroxides anchored ionic liquids as amphiphilic heterogeneous catalyst for Knoevenagel condensation

Tengfei Li,^a Wei Zhang,^a Wei Chen,^a Haralampos N. Miras ^{b*} and Yu-Fei Song^{ac*}

^aState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China.

^bWestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.

^cBeijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, P. R. China.

List of Contents:

Scaled-up synthesis of LDH-ILs-C12

Instruments

Table S1. ICP-AES measurements of the composition of different samples (mmol/g).

Figure. S1. TG-DTA profile of LDHs-ILs-C4

Figure. S2. TG-DTA profile of LDHs-ILs-C8.

Figure. S3. TG-DTA profile LDH-CO₃.

Table S2. Comparison of physicochemical properties LDH-ILs-Cn (n=4, 8, 12).

Figure. S4. SEM images of a) LDH-CO₃, b) LDH-ILs-C4, c) LDH-ILs-C8, d) LDH-ILs-C12.

Figure. S5. The CO₂-TPD curves of a) LDH-ILs-C4, b) LDH-ILs-C8, c) LDH-ILs-C12 and d) LDHs-CO₃ with carbonate as the intercalated anions in the interlayer.

Figure. S6. ¹H NMR and ¹³C NMR spectra of the product of Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate.

Figure. S7. Kinetic profiles of the Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate catalyzed by LDH-ILs-C4 (red line: yield of corresponding products; red line: $\ln(C_t/C_0)$, data were obtained by carrying out parallel experiments under the same experimental conditions).

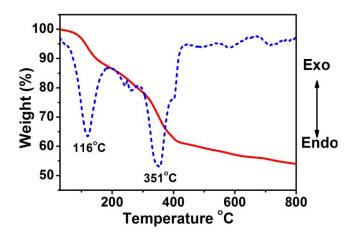
Figure S8. Kinetic profiles of the Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate catalyzed by LDH-ILs-C8 (red line: yield of corresponding products; red line: $\ln(C_t/C_0)$, data were obtained by carrying out parallel experiments under the same experimental conditions).

Table S3. The Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate catalyzed by LDH-CO₃ at room temperature in aqueous solution.

In a typical experiment, LDH-NO₃ (1.5 g) was added to formamide (500 mL) in a three necked flask, which was purged with N_2 to avoid carbonate contamination for 3h. Then the reaction mixture was under 60 kHz ultrasonication for 2 h. After that, the mixture was continuous vigorously stirred for 3 days under N_2 atmosphere. 13 mmol ILs-C12 was dissolved in CH₃CN (25 mL) and added dropwise to the nanosheets suspension. The reaction mixture was stirred under N_2 for 24 h. 5 g Na_2CO_3 was dissolved in 10 ml H_2O and added dropwise to the reaction mixture. After stirring for 1 h, the resultant precipitate of LDH-ILs-C12 was collected by centrifugation and washed with ethanol and water, and dried under vacuum overnight.

Instruments

Fourier transform infrared (FT-IR) spectra were recorded on a Bruker Vector 22 infrared spectrometer by using KBr pellet method. The ¹H-NMR and ¹³C-NMR spectra were recorded on a Bruker AV400 NMR spectrometer at resonance frequency of 400 MHz, and the chemical shifts were given relative to TMS as the internal reference. The solid-state ²⁹Si CP/MAS NMR experiment were record at 79.49 MHz with 60s pulse delay. The ¹³C CP/MAS NMR were obtained at 100.62 MHz with 5s pulse delay. The ²⁷Al MAS NMR was carried out at 104.23 MHz with a 2s pulse delays. All the spectra were performed by using a Bruker Ascend Aeon 400 WB solid-state spectrometer equipped with a commercial 4 mm MAS NMR probe for ²⁹Si and ¹³C, and a commercial 2.5 mm MAS NMR probe for ²⁷Al. The powder X-ray diffraction (XRD) analysis was carried out on a Bruker D8 diffractometer with high-intensity Cu-K α radiation ($\lambda = 0.154$ nm). Thermogravimetric (TG) analysis was performed on a STA-449C Jupiter (HCT-2 Corporation) at a heating rate of 10 °C min⁻¹ from 30 to 800 °C under N₂ (20 mL/min). Inductively coupled plasmaatomic emission spectroscopy (ICP-AES) analysis was performed on a Shimadzu ICPS-7500. BET measurements were performed at 77 K on a Quantachrome Autosorb-1C analyzer. N₂ adsorption-desorption isotherms were measured using a Quantachrome Autosorb-1 system at liquid nitrogen temperature. X-ray photoelectron spectroscopy (XPS) measurements were performed using a monochromatized $Al_{K\alpha}$ exciting X-radiation (PHI


Quantera SXM). Contact angles were measured with a contact angle meter at 25 °C. Scanning electron microscopy (SEM) images were obtained using a Zeiss Supra 55 SEM. The basicity of the composites were probed by the temperature-programmed desorption of carbon dioxide (CO₂ TPD) using a PCA-1200 Chemical adsorption apparatus.

We use CaCO₃ as an internal standard substance for quantitative calculation of the basic sites of hydrotalcite samples. The samples (70 mg) and CaCO₃ (20 mg) were degassed by heating at 100°C for 1 h under a He stream 30 mL min⁻¹ and then treated with CO₂ stream (30 mL min⁻¹) at 100°C for 25 min. Physically adsorbed CO₂ was removed by a flushing He stream at 100°C for 10 min. Chemisorbed CO₂ was desorbed by heating from about 30°C up to 900°C at a rate of 10 °C min⁻¹. The corresponding products were analysed by using an Agilent 7820A gas chromatography (GC) system using a 30 m 5% phenylmethyl silicone capillary column with an ID of 0.32 mm and 0.25 mm coating (HP-5). Yields were determined by GC analysis using reference standards. Assignments of the corresponding products were analysed by ¹H NMR and ¹³C NMR spectroscopy.

Table S1. ICP-AES measurements of the composition of different samples.

Materials	Mga	Ala	N ^a	Formula	
LDH-CO ₃	18.18	6.05	-	$Mg_{0.75}Al_{0.25}(OH)_2(CO_3)_{0.125} \cdot 0.5H_2O$	
LDH-ILs-C4	8.31	2.77	0.80	$Mg_{0.75}Al_{0.25}[O_{3}SiC_{10}H_{20}N_{2}]_{0.036}[Br]_{0.036}(OH)_{1.92}[CO_{3}]_{0.175}\cdot 0.59H_{2}O$	
LDH-ILs-C8	8.08	2.70	0.75	$Mg_{0.75}Al_{0.25}[O_{3}SiC_{14}H_{28}N_{2}]_{0.035}[Br]_{0.035}(OH)_{1.92}[CO_{3}]_{0.175}\cdot 0.64H_{2}O$	
LDH-ILs-C12	7.62	2.52	0.74	$Mg_{0.75}Al_{0.25}[O_{3}SiC_{18}H_{36}N_{2}]_{0.036}[Br]_{0.036}(OH)_{1.92}[CO_{3}]_{0.175}\cdot0.83H_{2}O$	
Reused LDH- ILs-C12	7.59	2.51	0.74	$Mg_{0.75}Al_{0.25}[O_{3}SiC_{18}H_{36}N_{2}]_{0.036}[Br]_{0.036}(OH)_{1.92}[CO_{3}]_{0.175}\cdot 0.85H_{2}O$	

 $[^]a$ Analyzed by TCP-AES or elemental analysis; The formula was determined by TG-DTA, ICP-AES and elemental analysis.

Figure. S1 TG-DTA profile of LDHs-ILs-C4.

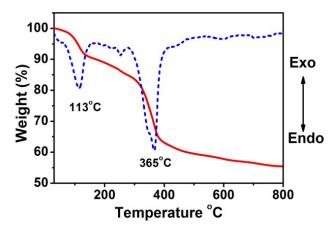


Figure. S2 TG-DTA profile of LDHs-ILs-C8.

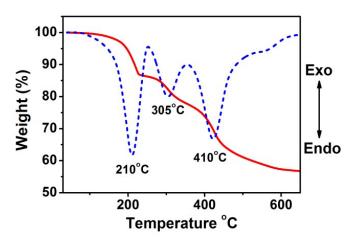


Figure. S3 TG-DTA profile LDH-CO₃.

Table S2. Comparison of physicochemical properties LDH-ILs-Cn (n=4, 8, 12).

Materials	Surface area ^a (m ² ·g ⁻	Pore volume ^b	Average pore size ^c	
	1)	(cm ³ ·g ⁻¹)	(nm)	
LDH-ILs-C4	25	0.05	3.5	
LDH-ILs-C8	25	0.05	4.2	
LDH-ILs-C12	28	0.06	4.8	

 $^{^{}a}$ specific surface area calculated by the BET method in the relative adsorption pressure (P/P_{0}); b total pore volume determined by N₂ desorption at relative pressure; c average pore diameter obtained from the desorption isotherm by the BJH method.

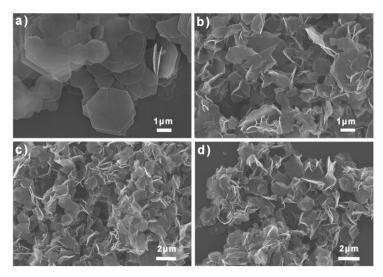
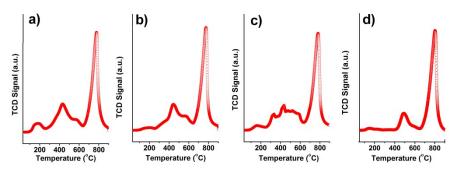
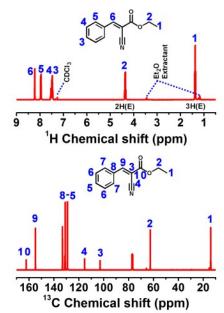




Figure. S4 SEM images of a) LDH-CO₃, b) LDH-ILs-C4, c) LDH-ILs-C8, d) LDH-ILs-C12.

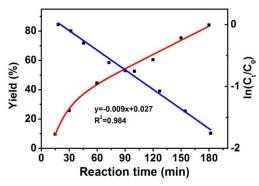

Figure. S5. The CO₂-TPD curves of a) LDH-ILs-C4, b) LDH-ILs-C8, c) LDH-ILs-C12 and d) LDHs-CO₃ with carbonate as the intercalated anions in the interlayer.

Figure. S6 The ¹H NMR and ¹³C NMR spectra of the product of Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate.

Figure. S7 Kinetic profile of the Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate catalyzed by LDH-ILs-C4 (red line: yield of corresponding products; red line: $\ln(C_t/C_0)$, data were obtained by carrying out parallel experiments under the same experimental conditions).

Figure. S8 Kinetic profile of the Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate catalyzed by LDH-ILs-C8 (red line: yield of corresponding products; red line: $\ln(C_t/C_0)$, data were obtained by carrying out parallel experiments under the same experimental conditions).

Table S3. The Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate catalyzed by LDH- CO_3 at room temperature in aqueous solution. [a]

Entry	Donor	Acceptor	Product	Time (h)	Yield ^[b] (%)
		X-II	X-II CN		
1		Х=Н	X=H	3	19.0
2		X=2-Me	X=2-Me	2	33.9
3		X=3-Me	X=3-Me	2	13.9
4		X=4-Me	X=4-Me	2	8.4
5		X=2-MeO	X=2-MeO	2	32.5
6		X=3-MeO	X=3-MeO	2	30.4
7		X=4-MeO	X=4-MeO	2	8.6
8		X=2-C1	X=2-Cl	2	16.6
9		X=3-C1	X=3-Cl	2	19.4
10		X=2-Br	X=2-Br	2	17.2
11	COOEt	X=3-Br	X=3-Br	2	21.1
12		X=4-Br	X=4-Br	2	37.4
13	CN	X=2-NO ₂	X=2-NO ₂	2	57.3
14		X=3-NO ₂	X=3-NO ₂	2	57.7
15		X=4-NO ₂	X=4-NO ₂	2	63.0
16		⟨s⟩∕o	S COOEt	2	21.0
17		F	F COOEt	2	17.1
		R O	R CN		
18		R=C ₇ H ₁₅	R=C ₇ H ₁₅	2	18.6
19		R=C ₉ H ₁₉	R=C ₉ H ₁₉	2	6.1
20		R=C ₁₀ H ₂₁	R=C ₁₀ H ₂₁	2	7.6

 $^{[a]}$ Reaction conditions: 1 mmol Substrate, 1.5 mmol ethyl cyanoacetate, 30 mg catalyst LDH-CO₃, 0.5 mL H₂O, rt. $^{[b]}$ Yields were determined by GC analysis using reference standards. Assignments of corresponding products were analyzed by 1 H NMR and 13 C NMR spectroscopy.

¹H and ¹³C data of resulting products

¹H-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 8.23 (s, 1H), 7.91 (d, 2H), 7.45-7.56 (d, 3H), 4.37 (m, 2H), 1.37 (t, 3H); ¹³C-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 162.3, 154.9, 133.2, 131.3, 130.9, 129.1, 115.4, 102.9, 62.6, 14.2.

¹H-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 8.19 (s, 1H), 7.59 (d, 2H), 7.40 (d, 2H), 4.33 (m, 2H), 2.40 (m, 3H), 1.31 (t, 3H); ¹³C-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 162.1, 154.6, 137.6, 130.1, 128.9, 128.5, 129.1, 102.7, 60.9, 21.3, 14.2.

¹H-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 8.23 (s, 1H), 8.00 (d, 2H), 7.16 (d, 2H), 4.33 (m, 2H), 3.81 (m, 3H), 1.27 (t, 3H); ¹³C-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 162.1, 159.8, 154.6, 130.2, 124.4, 117.5, 115.4, 102.9, 60.9, 55.8, 14.2.

¹H-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 8.20 (s, 1H), 7.78 (d, 2H), 7.60 (d, 2H), , 4.33 (m, 2H), 1.31 (t, 3H); ¹³C-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 162.2, 154.6, 133.3, 131.5, 131.0, 122.9, 102.9, 60.9, 14.2.

¹H-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 8.37 (d, 2H), 8.30 (m, 1H), 8.03 (d, 2H), 4.33 (m, 2H), 1.27 (t, 3H); ¹³C-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 162.1, 154.6, 147.1, 138.2, 131.5, 123.8, 102.7, 60.9, 14.2.

¹H-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 8.61(s, 1H), 8.09 (d, 1H), 7.74 (d, 1H), 7.33 (t, 2H), 4.30 (m, 3H), 1.27 (t, 3H); ¹³C-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 162.1, 157.0, 137.8, 130..5, 129.1, 128.3, 117.5, 93.5, 60.5, 14.2.

¹H-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 8.18 (s, 1H), 6.73 (s, 2H), 6.56 (s, 1H), 4.33 (m, 2H), 1.29 (t, 3H); ¹³C-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 162.1, 160.5, 137.6, 154.5, 138.4, 109.5, 103.9, 102.7, 60.5, 14.2.

¹H-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 7.79 (s, 1H), 7.58(d, 2H), 7.39(d, 2H), 7.33 (d, 1H); ¹³C-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 161.5, 131.2, 128.6, 128.4, 127.9, 113.6, 81.4.

¹H-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 7.83 (s, 1H), 7.60 (d, 2H), 7.39(d, 2H), 2.41 (m, 3H); ¹³C-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 161.5, 137.5, 128.9, 128.4, 128.2, 113.6, 81.2, 21.3.

¹H-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 7.79 (s, 1H), 7.62(d, 2H), 7.09(d, 2H), 3.80 (m, 3H); ¹³C-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 161.5, 159.5, 130.1, 123.7, 114.5, 113.6, 81.4, 55.8.

¹H-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 7.79 (s, 1H), 7.61(d, 2H), 7.76(d, 2H); ¹³C-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 161.5, 131.5, 130.4, 128.5, 122.3, 113.6, 81.4.

 1 H-NMR (400 MHz, CDCl₃, 298 K, TMS): δ= 8.37 (d, 2H), 8.00(d, 2H), 7.93(s, 1H); 13 C-NMR (400 MHz, CDCl₃, 298 K, TMS): δ= 161.5, 147.2, 137.5, 129.0, 123.3, 113.6, 81.4.

 1 H-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 7.93 (s, 1H), 7.05(d, 1H), 7.67 (d, 1H), 6.98(d, 1H); 13 C-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 152.3, 140.2, 135.4, 130.4, 128.3, 113.6, 75.2.

¹H-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 7.79 (s, 1H), 6.73(s, 2H), 6.56(s, 1H); ¹³C-NMR (400 MHz, CDCl₃, 298 K, TMS): δ = 161.5, 159.8, 138.4, 113.6, 110.0, 103.9, 81.3.