Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Square Planar Gold(III) bis-(1,1'-dimethyl-3,3'-methylene-diimidazol-2,2'diylidene) Trication as Efficient and Selective Receptor Towards Halogen Anions: Cooperative Effect of Au···X and X···HC Interactions

Marco Baron,^[a] Anna Dall'Anese,^[a] Cristina Tubaro,^[a]* Laura Orian,^[a] Valerio Di Marco,^[a] Sara Bogialli,^[a] Claudia Graiff,^[b] Marino Basato^[a]

^[a] Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy. E-mail: cristina.tubaro@unipd.it

^[b] Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.

1. NMR spectra of compound 1-3Cl	S2
2. NMR spectra of compound 1-3Br	S4
3. NMR spectra of compound 1-3I	S6
4. HRMS spectra of complexes 1-3X	S9
5. NMR titration of 1-3PF ₆ with NEt ₄ Cl·H ₂ O in dmso-d ₆	S15
5.1 Example of fitting of the experimental data	S16
6. NMR titration of 1-3PF ₆ with NEt ₄ Br in dmso-d ₆	S18
7. NMR titration of 1-3PF6 with NBu4I in dmso-d6	S19
8. Job-Plot Titrations	S21
8.1 $1-3PF_6$ and $NEt_4Cl \cdot H_2O$ in $dmso-d_6$	S21
8.2 1-3PF ₆ and NEt ₄ Br dmso-d ₆	S22
8.3 1-3PF ₆ and NBu ₄ I dmso-d ₆	S23
9. Distribution diagram for the systems $1^{3+}/1X^{2+}/1X_{2^+}$ in dmso-d ₆ and in D ₂ O	S24
10. NMR titration of 1-3PF6 with NEt4Cl·H2O in D2O	S25
11. NMR titration of 1-3PF6 with NEt4Br in D2O	S27
12. NMR titration of 1-3PF ₆ with NBu ₄ I in D ₂ O	S28
13. NMR titration of 1-3PF6 with HCl in D ₂ O	S29
14. NMR titration of 1-3PF6 with NBu4PF6 in dmso-d6	S31
15. Additional computational data	S32
16. SC-XRD data	S33
17. Additional comments on crystal packing	S34

1. NMR spectra of compound 1-3Cl

Figure S1: ¹H NMR (DMSO-d₆, 300 MHz) of **1-3Cl**.

Figure S2: ¹³C{¹H} NMR (DMSO-d₆, 75.5 MHz) of 1-3Cl.

Figure S3: Section of the ¹H,¹³C HMQC NMR (DMSO-d₆) of **1-3Cl**, showing the coupling between the methylene carbon and one of the two methylene protons.

2. NMR spectra of compound 1-3Br

Figure S5: ¹³C{¹H} NMR (DMSO-d₆, 75.5 MHz) of **1-3Br**.

Figure S6: Section of the ¹H,¹³C HMQC NMR (DMSO-d₆) of **1-3Br**, showing the coupling between the methylene carbon and the two methylene protons.

3. NMR spectra of compound 1-3I

Figure S8: ¹³C{¹H} NMR (DMSO-d₆, 75.5 MHz) of 1-3I.

Figure S9: Section of the 1 H, 13 C HMQC NMR (DMSO-d₆) of **1-3I**, showing the coupling between the methyl carbon and the methyl protons.

Figure S10: Section of the ¹H,¹³C HMQC NMR (DMSO-d₆) of **1-3I**, showing the coupling between the methylene carbon and the two methylene protons.

4. HRMS spectra of complexes 1-3X

0-4_dmso_esi_pos_sheath11_aux_gas0_sweep0_spay3.5rf50 #4-222 RT: 0.02-0.99 AV: 219 NL: 3.36E9

Figure S11: HRMS spectra of 1-3Cl in DMSO ([1-3Cl]=0.33 mM).

Figure S12: HRMS spectra of 1-3Cl in DMSO ([1-3Cl]=0.33 mM): isotopic pattern of the peak at m/z 619.1144.

Figure S13: HRMS spectra of 1-3Cl in DMSO ([1-3Cl]=0.33 mM): isotopic pattern of the peak at m/z 292.0724.

Figure S14: HRMS spectra of 1-3Br in DMSO ([1-3Br]=0.35 mM).

001_2017_11_20_infusione_sample126bis_3-5-10-4_dmso_esi_pos_sheath11_aux_gas0_sweep0_spay3.5rf50 #9-223 RT: 0.04-0.99 AV: 215 NL: 6.37E8 T: FTMS + c ESI Full ms (150.0000-2000.0000)

Figure S15: HRMS spectra of 1-3Br in DMSO ([1-3Br]=0.35 mM): isotopic pattern of the peak at m/z 709.0091.

Figure S16: HRMS spectra of 1-3Br in DMSO ([1-3Br]=0.35 mM): isotopic pattern of the peak at m/z 314.0462.

Figure S17: HRMS spectra of 1-3I in DMSO ([1-3I]=0.34 mM).

001_2017_11_17_infusione_sample177_3-10-4_DMSO_ESI_POS_sheath11_aux_gas0_sweep0_spay3.5RF50 #1 RT: 0.00 AV: 1 NL: 5.67E8 T: FTNS + p ESI Full ms [150.0000-2000.0000]

Figure S18: HRMS spectra of **1-3I** in DMSO ([**1-3I**]=0.34 mM): isotopic pattern of the peak at *m/z* 802.9845.

Figure S19: HRMS spectra of 1-3I in DMSO ([1-3I]=0.34 mM): isotopic pattern of the peak at m/z 338.0403.

5. NMR titration of 1-3PF₆ with NEt₄Cl·H₂O to in dmso-d₆

Method a

Figure S20: ¹H NMR titration (300 MHz, 298 K) of a $7.26 \cdot 10^{-3}$ M solution of **1-3PF**₆ in DMSO-d₆ with a NEt₄Cl·H₂O solution in DMSO-d₆.

Table S1: ¹H NMR titration (300 MHz, 298 K) of a $7.26 \cdot 10^{-3}$ M solution of **1-3PF**₆ in DMSO-d₆ with a NEt₄Cl·H₂O solution in DMSO-d₆.

[1-3PF ₆] (mM)₀	[Cl] ₀ /[1-3PF ₆] ₀	δ H _{endo} (ppm)	Δδ H _{endo} (ppm)	δ Η _{Μe} (ppm)	Δδ Η _{Μe} (ppm)	[Cl]₀ (mM)
7.26	0	6.8625	0	3.506	0	0.00
7.21	0.5	7.16	0.2975	3.553	0.047	3.60
7.15	1	7.445	0.5825	3.595	0.089	7.15
7.10	1.5	7.65	0.7875	3.625	0.119	10.7
7.06	2	7.78	0.9175	3.643	0.137	14.1
7.01	2.5	7.87	1.0075	3.656	0.15	17.5
6.96	3	7.93	1.0675	3.665	0.159	20.9
6.86	4	8	1.1375	3.676	0.17	27.5
6.68	6	8.065	1.2025	3.685	0.179	40.1
6.43	9	8.105	1.2425	3.691	0.185	57.9

5.1 Example of fitting of the experimental data

Figure S21: ¹H NMR experimental points (circles) obtained from the titration (300 MHz, 298 K) of a $7.26 \cdot 10^{-3}$ M solution of **1-3PF**₆ in DMSO-d₆ with a NEt₄Cl·H₂O solution in DMSO-d₆. The lines represents the fitting of the experimental data.

The equation used for fitting is:

$$\delta = \frac{\Delta \delta_{\mathrm{CH}_2(\mathbf{1}\mathrm{Cl}^{2+})} \left[\mathbf{1}\mathrm{Cl}^{2+} \right] + \Delta \delta_{\mathrm{CH}_2(\mathbf{1}\mathrm{Cl}_2^+)} \left[\mathbf{1}\mathrm{Cl}_2^+ \right]}{C_1}$$

where $\Delta \delta_{CH_2(1Cl^{2+})}$ and $\Delta \delta_{CH_2(1Cl_2^+)}$ are the chemical shift values reported in Table 1 of the main text,

 $[\mathbf{1}Cl^{2+}]$ and $[\mathbf{1}Cl_{2}^{+}]$ are the concentrations of the complexes at equilibrium, computed by the fitting program using the equilibrium constants of Table 1, and C_1 is the total concentration of 1, reported in Table S1. Fitting parameters: mean sum of squares between experimental and computed values = 0.0017, mean variance = 0.00096.

Figure S22: ¹H NMR titration (300 MHz, 298 K) of a $7.26 \cdot 10^{-3}$ M solution of **1-3PF**₆ in DMSO-d₆ with a NEt₄Cl·H₂O solution in DMSO-d₆.

Table S2: ¹H NMR titration (300 MHz, 298 K) of a $7.26 \cdot 10^{-3}$ M solution of **1-3PF**₆ in DMSO-d₆ with a NEt₄Cl·H₂O solution in DMSO-d₆.

[1-3PF ₆]	[CI]0/[1-3PF6]0	δ H _{endo}	$\Delta \delta H_{endo}$	δ Η _{Μe}	Δδ Η _{Μe}	[CI]₀
(mM)₀		(ppm)	(ppm)	(ppm)	(ppm)	(mM)
7.26	0	6.8625	0.00	3.506	0	0.00
7.26	1	7.42	0.5575	3.592	0.086	7.26
7.26	2	7.76	0.8975	3.637	0.131	14.52
7.26	3	7.93	1.0675	3.663	0.157	21.78
7.26	4	7.98	1.1175	3.669	0.163	29.04
7.26	5	8.04	1.1775	3.679	0.173	36.30
7.26	6	8.06	1.1975	3.683	0.177	43.56
7.26	7	8.07	1.2075	3.685	0.179	50.82
7.26	8	8.08	1.2175	3.687	0.181	58.08
7.26	9	8.09	1.2275	3.688	0.182	65.34

6. NMR titration of 1-3PF₆ with NEt₄Br in dmso-d₆

Figure S23: ¹H NMR titration (300 MHz, 298 K) of a $7.26 \cdot 10^{-3}$ M solution of **1-3PF**₆ in DMSO-d₆ with a NEt₄Br solution in DMSO-d₆.

Table S3: ¹H NMR titration (300 MHz, 298 K) of a 7.26 \cdot 10⁻³ M solution of **1-3PF**₆ in DMSO-d₆ with a NEt₄Br solution in DMSO-d₆.

[1-3PF₀]₀ (mM)	[Br]₀/[1- 3PF₀]₀	δ H _{endo} (ppm)	Δδ H _{endo} (ppm)	δ Η _{Μe} (ppm)	Δδ Η _{Μe} (ppm)	[Br]₀ (mM)
7.26	0	6.8625	0	3.506	0	0.00
7.25	0.25	6.967	0.1045	3.523	0.017	1.81
7.21	0.5	7.077	0.2145	3.542	0.036	3.60
7.15	1	7.258	0.3955	3.571	0.065	7.15
7.10	1.5	7.421	0.5585	3.599	0.093	10.7
7.06	2	7.5265	0.664	3.616	0.11	14.1
7.01	2.5	7.6025	0.74	3.628	0.122	17.5
6.96	3	7.6635	0.801	3.637	0.131	20.9
6.86	4	7.7275	0.865	3.648	0.142	27.5
6.68	6	7.8045	0.942	3.66	0.154	40.1
6.43	9	7.859	0.9965	3.669	0.163	57.9
6.20	12	7.889	1.0265	3.675	0.169	74.3

7. NMR titration of 1-3PF₆ with NBu₄I in dmso-d₆

Method a

Figure S24: ¹H NMR titration (300 MHz, 298 K) of a $7.26 \cdot 10^{-3}$ M solution of **1-3PF**₆ in DMSO-d₆ with a NBu₄I solution in DMSO-d₆.

Table S4: ¹H NMR titration (300 MHz, 298 K) of a $7.26 \cdot 10^{-3}$ M solution of **1-3PF**₆ in DMSO-d₆ with a NBu₄I solution in DMSO-d₆.

[1-3PF₀]₀ (mM)	[I]₀/[1-3PF ₆]₀	δ H _{endo} (ppm)	Δδ H _{endo} (ppm)	δ Η _{Μe} (ppm)	Δδ Η _{Μe} (ppm)	[I]₀ (mM)
7.26	0	6.863	0	3.506	0	0.00
7.21	0.5	7.036	0.173	3.535	0.029	3.60
7.15	1	7.1465	0.2835	3.553	0.047	7.15
7.10	1.5	7.214	0.351	3.565	0.059	10.7
7.06	2	7.271	0.408	3.575	0.069	14.1
7.01	2.5	7.321	0.458	3.583	0.077	17.5
6.96	3	7.353	0.49	3.589	0.083	20.9
6.86	4	7.4025	0.5395	3.599	0.093	27.5
6.68	6	7.462	0.599	3.61	0.104	40.1
6.43	9	7.513	0.65	3.619	0.113	57.9

Figure S25: ¹H NMR titration curves (300 MHz, 298 K) based on the H_{endo} chemical shift variation of a 7.26·10⁻³ M solution of **1-3PF**₆ in DMSO-d₆ with a NEt₄Cl·H₂O (\blacksquare , method a), NEt₄Cl·H₂O (\square , method b), NEt₄Br (\bullet) and NBu₄I (\blacktriangle) solution in DMSO-d₆.

8. Job-Plot Titrations

8.1 **1-3PF**₆ and NEt₄Cl·H₂O in dmso-d₆

Figure S26: ¹H NMR spectra of Job plot titration in DMSO-d₆ for the interaction of **1-3PF**₆ and Cl⁻.

n.	V	V	[1-3PF ₆] ₀	[Cl⁻]₀	X 1-3PF6	Δ	Δδ	Δδ·χ _{1-3PF6}	δ	Δδ	Δδ·χ _{1-3PF6}
	(1-3PF ₆)	(Cl⁻)				H _{endo}	H _{endo}	H _{endo}	H _{Me}	H _{Me}	H _{Me}
	(μL)	(μL)	(mM)	(mM)		(ppm)	(ppm)		(ppm)	(ppm)	
1	700	0	5.11	0.00	1	6.86	0	0	3.51	0	0
2	630	70	4.59	0.49	0.90	6.93	0.06	0.06	3.52	0.01	0.01
3	560	140	4.08	0.98	0.81	7.00	0.14	0.11	3.53	0.02	0.02
4	490	210	3.57	1.47	0.71	7.10	0.24	0.17	3.54	0.04	0.03
5	420	280	3.06	1.96	0.61	7.23	0.37	0.22	3.56	0.06	0.03
6	350	350	2.55	2.45	0.51	7.38	0.52	0.27	3.57	0.08	0.04
7	280	420	2.04	2.94	0.41	7.53	0.67	0.27	3.61	0.10	0.04
8	210	490	1.53	3.43	0.31	7.67	0.80	0.25	3.63	0.12	0.04
9	140	560	1.02	3.92	0.21	7.78	0.92	0.19	3.64	0.14	0.03
10	70	630	0.51	4.41	0.10	7.86	0.97	0.10	3.66	0.15	0.02
11	0	700	0.00	4.90	0	-	-	0	-	-	0

Table S5: ¹H NMR data of Job plot titration in DMSO-d₆ for the interaction of 1-3PF₆ and Cl⁻.

8.2 1-3PF6 and NEt4Br dmso-d6

Figure S27: ¹H NMR spectra of Job plot titration in DMSO-d₆ for the interaction of 1-3PF₆ and Br⁻.

n.	V	v	[1-3PF ₆] ₀	[Br⁻]₀	X 1-3PF6	Δ	Δδ	Δδ·χ 1-3PF6	δ	Δδ	Δδ·χ 1-3PF6
	(1-3PF ₆)	(Br⁻)				Hendo	Hendo	H endo	Н _{Ме}	Н _{Ме}	H _{Me}
	(μL)	(μL)	(mM)	(mM)		(ppm)	(ppm)		(ppm)	(ppm)	
1	500	0	5.08	0	1.00	6.86	0.00	0.00	3.51	0.00	0.00
2	450	50	4.57	0.49	0.90	6.91	0.05	0.04	3.51	0.01	0.01
3	400	100	4.06	0.98	0.81	6.97	0.11	0.09	3.52	0.02	0.01
4	350	150	3.56	1.48	0.71	7.05	0.18	0.13	3.54	0.03	0.02
5	300	200	3.05	1.97	0.61	7.14	0.28	0.17	3.55	0.05	0.03
6	250	250	2.54	2.46	0.51	7.25	0.39	0.20	3.57	0.06	0.03
7	200	300	2.03	2.95	0.41	7.35	0.49	0.20	3.59	0.08	0.03
8	150	350	1.52	3.44	0.31	7.45	0.59	0.18	3.60	0.10	0.03
9	100	400	1.02	3.93	0.21	7.53	0.67	0.14	3.62	0.11	0.02
10	50	450	0.51	4.43	0.10	7.60	0.74	0.08	3.63	0.12	0.01
11	0	500	0	4.92	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table S6: ¹H NMR data of Job plot titration in DMSO-d₆ for the interaction of 1-3PF₆ and Br⁻.

8.3 1-3PF6 and NBu4I dmso-d6

Figure S28: ¹H NMR spectra of Job plot titration in DMSO-d₆ for the interaction of 1-3PF₆ and I⁻.

n.	V	V	[1-3PF ₆] ₀	[I ⁻] ₀	X 1-3PF6	Δ	Δδ	Δδ·χ _{1-3PF6}	δ	Δδ	Δδ·χ _{1-3PF6}
	(1-3PF ₆)	(Ľ)				H _{endo}	H endo	H endo	H _{Me}	H _{Me}	H _{Me}
	(μL)	(μL)	(mM)	(mM)		(ppm)	(ppm)		(ppm)	(ppm)	
1	500	0	5.08	0.00	1.00	6.86	0.00	0.00	3.51	0.00	0.00
2	450	50	4.57	0.51	0.90	6.92	0.06	0.05	3.52	0.01	0.01
3	400	100	4.06	1.02	0.80	6.96	0.10	0.08	3.52	0.02	0.01
4	350	150	3.56	1.53	0.70	7.01	0.15	0.10	3.53	0.03	0.02
5	300	200	3.05	2.04	0.60	7.06	0.20	0.12	3.54	0.03	0.02
6	250	250	2.54	2.54	0.50	7.12	0.26	0.13	3.55	0.04	0.02
7	200	300	2.03	3.05	0.40	7.17	0.31	0.12	3.56	0.05	0.02
8	150	350	1.52	3.56	0.30	7.22	0.36	0.11	3.57	0.06	0.02
9	100	400	1.02	4.07	0.20	7.24	0.38	0.07	3.57	0.07	0.01
10	50	450	0.51	4.58	0.10	7.30	0.44	0.04	3.58	0.07	0.01
11	0	500	0	5.09	0.00	6.86	0.00	0.00	0.00		0.00

Table S7: ¹H NMR data of Job plot titration in DMSO-d₆ for the interaction of **1-3PF**₆ and I⁻.

9. Distribution diagram for the systems $1^{3\scriptscriptstyle +}$ / $1X^{2\scriptscriptstyle +}$ / $1X_2^{\scriptscriptstyle +}$ in dmso-d_6 and in D_2O

Figure S29: Species distribution diagram as a function of the total chloride concentration in dmsod₆ ([1^{3+}]₀=0.003M). **Figure S30:** Species distribution diagram as a function of the total bromide concentration in dmsod₆ ([1^{3+}]₀=0.003M).

-6

-6

Figure S31: Species distribution diagram as a function of the total iodide concentration in dmso- $d_6 ([1^{3+}]_0=0.003M)$.

-3

 $log(C_I)$

_4

-5

-6

-2

1I²⁺

1³⁺

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0

C(M)

 $1I_2^+$

Figure S32: Species distribution diagram as a function of the total chloride concentration in D_2O ([1³⁺]₀=0.004M).

Figure S33: Species distribution diagram as a function of the total bromide concentration in $D_2O([1^{3+}]_0=0.004M)$.

Figure S34: Species distribution diagram as a function of the total iodide concentration in $D_2O([1^{3+}]_0=0.004M)$.

10. NMR titration of 1-3PF6 with NEt4Cl·H2O in D2O

Method a

Figure S35: ¹H NMR titration (300 MHz, 298 K) of a $4.22 \cdot 10^{-4}$ M solution of **1-3PF**₆ in D₂O with a NEt₄Cl·H₂O solution in D₂O.

Table S8: ¹H NMR titration (300 MHz, 298 K) of a $4.22 \cdot 10^{-4}$ M solution of **1-3PF**₆ in D₂O with a NEt₄Cl·H₂O solution in D₂O.

[1-3PF ₆] ₀ (mM)	[Cl⁻]₀ (mM)	[Cl ⁻]₀/[1-3PF ₆]₀	δ H _{endo} (ppm)	Δδ H _{endo} (ppm)
0.422	0.000	0.00	6.7935	0.000
0.420	0.422	1.01	6.7975	0.004
0.418	0.841	2.01	6.8045	0.011
0.416	1.25	3.02	6.809	0.0155
0.414	1.66	4.02	6.813	0.0195
0.410	2.47	6.04	6.8235	0.030
0.406	3.27	8.05	6.832	0.0385
0.402	4.04	10.06	6.8375	0.044
0.393	5.92	15.09	6.8585	0.065
0.384	7.72	20.12	6.8775	0.084
0.375	9.43	25.15	6.887	0.0935
0.338	17.0	50.30	6.9135	0.120
0.338	33.8	100.00	6.9645	0.171
0.338	67.5	200.00	7.005	0.2115

Method b

Figure S36: ¹H NMR titration (300 MHz, 298 K) of a $4.22 \cdot 10^{-4}$ M solution of **1-3PF**₆ in D₂O with a NEt₄Cl·H₂O solution in D₂O.

Table S9: ¹H NMR titration (300 MHz, 298 K) of a $4.22 \cdot 10^{-4}$ M solution of **1-3PF**₆ in D₂O with a NEt₄Cl·H₂O solution in D₂O.

[1-3PF ₆] ₀ (mM)	[Cl⁻]₀ (mM)	[Cl ⁻] ₀ /[1-3PF ₆] ₀	δ H _{endo} (ppm)	Δδ H _{endo} (ppm)
0.422	0.00	0.00	6.7935	0.000
0.422	7.66	18.15	6.86045	0.06695
0.422	14.89	35.29	6.89655	0.10305
0.422	21.74	51.51	6.91865	0.12515
0.422	28.22	66.87	6.9355	0.142
0.422	34.37	81.44	6.9478	0.1543
0.422	40.21	95.29	6.9595	0.166
0.422	45.77	108.46	6.9673	0.1738
0.422	51.06	121.00	6.97405	0.18055
0.422	60.93	144.37	6.9785	0.185
0.422	69.93	165.72	6.99435	0.20085
0.422	78.19	185.28	7.00295	0.20945
0.422	85.78	203.28	7.0084	0.2149

11. NMR titration of 1-3PF6 with NEt4Br in D2O

Figure S37: ¹H NMR titration (300 MHz, 298 K) of a $4.22 \cdot 10^{-4}$ M solution of **1-3PF**₆ in D₂O with a NEt₄Br solution in D₂O.

Table S10: ¹	H NMR	titration	(300 MHz,	298 K)	of a 4.22·1	0 ⁻⁴ M solutior	n of 1-3PF 6	in D_2O	with a	ι NEt₄Br
solution in D	₂ O.									

[1-3PF ₆] ₀	[Br⁻]₀ (mM)	[Br ⁻]₀/[1-3PF ₆]₀	δ H _{endo} (ppm)	Δδ H _{endo} (ppm)
0.422	0.00	0.00	6.7935	0
0.420	0.414	0.99	6.802	0.0085
0.418	0.825	1.97	6.8145	0.021
0.416	1.23	2.96	6.8245	0.031
0.414	1.63	3.95	6.833	0.0395
0.410	2.43	5.92	6.8515	0.058
0.406	3.20	7.90	6.867	0.0735
0.402	3.97	9.87	6.881	0.0875
0.393	5.81	14.80	6.915	0.1215
0.384	7.57	19.74	6.9385	0.145
0.375	9.26	24.67	6.953	0.1595
0.367	10.9	29.61	6.9695	0.176
0.338	16.7	49.35	7.0073	0.2138
0.338	37.5	110.93	7.0802	0.2867
0.338	52.7	156.07	7.1075	0.314
0.338	68.7	203.46	7.128	0.3345

12. NMR titration of 1-3PF6 with NBu4I in D2O

Figure S38: ¹H NMR titration (300 MHz, 298 K) of a $4.22 \cdot 10^{-4}$ M solution of **1-3PF**₆ in D₂O with a NBu₄I solution in D₂O.

Table S11: ¹ H NMR	titration (300 MH)	z, 298 K) of a	4.22·10 ⁻⁴ M	solution of 1	$1-3PF_6$ in D_2O	with a NBu ₄ I
solution in D_2O .						

[1-3PF ₆] ₀ (mM)	[I⁻]₀ (mM)	[l ⁻]₀/[1-3PF ₆]₀	δ H _{endo} (ppm)	Δδ H _{endo} (ppm)
0.422	0.00	0.00	6.7935	0
0.420	0.414	0.99	6.802	0.0085
0.418	0.825	1.97	6.8145	0.021
0.416	1.23	2.96	6.8245	0.031
0.414	1.63	3.95	6.833	0.0395
0.410	2.43	5.92	6.8515	0.058
0.406	3.20	7.90	6.867	0.0735
0.402	3.97	9.87	6.881	0.0875
0.393	5.81	14.80	6.915	0.1215
0.384	7.57	19.74	6.9385	0.145
0.375	9.26	24.67	6.953	0.1595
0.367	10.9	29.61	6.9695	0.176
0.338	16.7	49.35	7.0073	0.2138
0.338	37.5	110.93	7.0802	0.2867
0.338	52.7	156.07	7.1075	0.314
0.338	68.7	203.46	7.128	0.3345

13. NMR titration of 1-3PF₆ with HCl in D₂O

Figure S39: ¹H NMR titration (300 MHz, 298 K) of a $4.22 \cdot 10^{-4}$ M solution of **1-3PF**₆ in D₂O with a HCl solution in D₂O.

Table S12: ¹	H NMR	titration	(300 MHz,	298 K)	of a 4	$4.22 \cdot 10^{-4}$	M solution	of 1-3PF ₆	in D ₂ O	with a	HC1
solution in D ₂	2 O .										

[1-3PF ₆] ₀ (mM)	[Cl⁻]₀ (mM)	рН	[Cl ⁻] ₀ /[1-3PF ₆] ₀	δ H _{endo} (ppm)	Δδ H _{endo} (ppm)
0.422	0.00	7.00	0	6.795	0
0.418	4.178	2.38	10	6.835	0.04
0.414	8.271	2.08	20	6.87	0.075
0.410	12.29	1.91	30	6.895	0.1
0.406	16.24	1.79	40	6.915	0.12
0.402	20.09	1.70	50	6.93	0.135
0.398	23.88	1.62	60	6.94	0.145
0.395	27.62	1.56	70	6.955	0.16
0.391	31.26	1.50	80	6.96	0.165
0.384	38.36	1.42	100	6.975	0.18
0.367	55.07	1.26	150	7.005	0.21
0.352	70.31	1.15	200	7.02	0.225

Figure S40: ¹H NMR titration curves (300 MHz, 298 K) based on the H_{endo} chemical shift variation of a 4.22·10⁻⁴ M solution of **1-3PF**₆ in D₂O with a HCl (\circ), NEt₄Cl·H₂O (\bullet , method a), NEt₄Cl·H₂O (\otimes , method b), NEt₄Br (\blacktriangle) and NBu₄I (\blacksquare) solution in D₂O.

Figure S41: ¹H NMR titration (300 MHz, 298 K) of a $7.26 \cdot 10^{-3}$ M solution of **1-3PF**₆ in DMSO-d₆ with a NBu₄PF₆ solution in DMSO-d₆.

15. Additional computational data

	•			
	HOMO-2	HOMO-1	НОМО	LUMO
	(A')	(A'')	(A')	(A'')
1Cl ²⁺	41.33% Cl(p _x)	90.03% Cl(pz)	49.98% Cl(p _x)	99.7% AuL ³⁺ (LUMO+1)
	39.77% Cl(p _y)	3.72% AuL ³⁺ (LUMO)	34.16% Cl(p _y)	
	7.69% AuL ³⁺ (LUMO)		3.72% AuL ³⁺ (LUMO)	
1Br ²⁺	20.17% Cl(p _x)	91.19% Br(pz)	71.97% Br (px)	99.7% AuL ³⁺ (LUMO+1)
	56.37% Cl(py)	1.14%AuL ³⁺ (LUMO)	17.60% Br (py)	
	12.31% AuL ³⁺ (LUMO)		1.55% AuL ³⁺ (LUMO)	
$1I^{2+}$	15.10% I(p _x)	92.48% I(pz)	76.82% I(p _x)	99.75% AuL ³⁺ (LUMO+1)
	60.27% I(p _y)		13.96% I(p _y)	
	16.23% AuL ³⁺ (LUMO)		1.07% AuL ³⁺ (LUMO)	

Table S13: Percentage composition (halogen p orbitals and 1^{3+} LUMO) of frontier MOs of $1X^{2+}$ complexes from ASM; level of theory: ZORA-BLYP-D3(BJ)/TZ2P sc.

Table S14: Energies (kcal mol⁻¹) of the reactions of formation of $AuLX^{2+}$ and $AuLX_{2^{+}}$ (X=Cl, Br, I) in gasphase, DMSO and water; values in italics refer to energies of species relaxed in solvent. Level of theory (COSMO)-ZORA--BLYP-D3(BJ)/TZ2P sc.

	1Cl ²⁺	1Br ²⁺	$1I^{2+}$	1Cl ₂ +	$1Br_2^+$	$1I_{2}^{+}$
GAS-	-235.23	-229.08	-224.08	-397.37	-385.89	-375.51
PHASE						
DMSO	-3.83	-4.92	-6.49	-4.89	-7.04	-10.03
	-5.28	-5.94	-7.00	-7.18	-8.89	-11.09
H ₂ O	0.65	-0.53	-2.17	2.05	-0.59	-3.59
	-1.66	-2.37	-3.32	-1.75	-3.43	-5.41

16. SC-XRD Data

Compound	1-Cl,2I ₃	1-3Br·I ₂	1-3I ₃
Formula	C ₁₈ H ₂₄ Au N ₈ Cl I ₆	$C_{18} H_{24} Au N_8 Br_3 I_2$	C ₂₂ H ₃₀ Au I ₉ N ₁₀
Molecular Weight	1346.27	1042.95	1773.62
Crystal system	monoclinic	monoclinic	orthorhombic
Space group	C 2/c	C 2/m	Pbca
<i>a</i> [Å]	13.237(6)	12.0405(8)	21.3052(16)
b[Å]	21.466(10)	11.2536(8)	14.9146(11)
c[Å]	12.233(6)	10.3517(7)	27.057(2)
β[°]	108.518(7)	104.686(7)	90
V[Å ³]	3296(3)	1356.82(17)	8597.5(11)
Ζ	4	2	8
$D_{calc}[g \cdot cm^{-3}]$	2.713	2.553	2.740
μ[cm ⁻¹]	10.186	12.137	9.913
F(000)	2408	956	6304
θ _{max} [°]	30.436	28.994	29.481
Reflections collected	22910	9679	126682
Independent reflections	4870	1983	11903
Reflections in refinement	3518	1976	6582
R(int)	0.0777	0.0298	0.0439
Refined parameters	160	82	385
\mathbf{R} , $[\mathbf{I} > 2\sigma(\mathbf{I})]$	$R_1 = 0.0768$	$R_1 = 0.0321$	$R_1 = 0.0501$
\mathbf{K}_{1} [1 > 20(1)]	$wR_2 = 0.1906$	$wR_2 = 0.0872$	$wR_2 = 0.1285$
wR ₂ [all data]	$R_1 = 0.0964$	$R_1 = 0.0321$	$R_1 = 0.1031$
	$wR_2 = 0.2072$	$wR_2 = 0.0873$	$wR_2 = 0.1555$
GOF	0.958	0.999	1.058

Table S15: Main crystallographic parameters of compounds 1-Cl,2I₃, 1-3Br·I₂ and 1-3I₃.

 $R_1 = \Sigma [Fo-Fc]/\Sigma(Fo);$ $wR_2 = [\Sigma[w(Fo^2-Fc^2)^2]/\Sigma[w(Fo^2)^2]]^{1/2}.$

17. Additional comments on crystal packing

View of the crystal packing of **1-Cl,2I**₃ along the *c* axis.

View along the a axis of the $-[Au-Cl]_n$ -lines.

In the crystal packing of **1-Cl,2I**₃ the cationic gold(III) complexes are stacked together, with a chloride in between each pseudo-planar cationic complex. Every chloride is interacting with two different gold centres with an Au-Cl distance of 3.1691(17) Å, forming –[Au-Cl]_n- lines, running in the *c* crystallographic direction. Two tricationic complexes interacting with the same chloride are rotated one each other, with a torsion angle C1-Au-Au'-C9' of $116.7(4)^{\circ}$ (' = -x, +y, 5/2-z). The I₃⁻ anions lays in the crystal packing in between the -[Au-Cl]_n- lines. There are no interactions between the I₃⁻ anions and the gold centres, although there are different short contacts between the terminal atoms of the I₃⁻ groups and hydrogen atoms of the diNHC ligands. The I-I distances in the I₃⁻ groups are fully consistent with those of the I₃⁻ groups present in the structure of **1-3I**₃ that are not involved in the Au-I interaction (*vide infra*).

1-3Br·I₂

View of the crystal packing of $1-3Br \cdot I_2$ along the *b* axis.

View of the crystal packing of $1-3Br \cdot I_2$ along the *c* axis.

The crystal packing of **1-3Br·I**₂, is formed by **1-Br**²⁺ lines, running along the *c* crystallographic direction. In this case the bromides interacting with the gold centres are not in a bridging fashion in between two gold centres, thus discrete units of **1-Br**₂⁺ are found in the lattice. An I₂ molecule is found in between two next gold centres laying on the same axis. This I₂ molecule, presents short contacts with two bromides interacting with the gold centres. In this way, a zigzag -[AuBrI₂Br]_n-chain running along the *c* crystallographic direction is formed. The Br1-I1 distance is of 3.1188(6) Å, while the I1-I1' distance is of 2.7600(6) Å. The Br2 atoms are not interacting with the gold centres but they present short contacts towards hydrogen atoms of the diNHC ligands, and they are located in between the **1-Br**₂⁺ lines.

1-3I3

View of the crystal packing of **1-3I**₃ along the *c* axis.

View of the crystal packing of $1-3I_3$ along the *b* axis.

In the packing of **1-3I**₃, lines of gold complexes are ordered along the b crystallographic axes. Two next complexes on the same line, interact with the same iodine atom of an I₃⁻ group, which is therefore in a bridging fashion, forming -[Au-I]_n- lines along the b axes. The iodine atom involved in the Au-I interaction is only I4, with the Au-I4' and Au-I4'' distances of 3.6834(7) and 4.0182(7) Å respectively (' = 2-x, -1/2+y, 3/2-z, '' = -1/2+x, +y, 3/2-z). As a consequence of the interaction between I4 and the gold centres, the I4-I5 distance is longer (3.0251(10)Å) compared to the other I-I distances present in the structure (I1-I2 2.9136(19), I2-I3 2.9324(19), I5-I6 2.8418(10), I7-I8 2.9027(11), and I8-I9 2.9274(11) Å). The I₃⁻ anions that are not involved in the Au-I interaction lays in between the -[AuI]_n-lines. The acetonitrile molecules present in crystal lattice, are in the space between the gold complexes in the different lines. Several hydrogen bond interactions between the I₃⁻ anions and the hydrogen atoms of the diNHC ligands and of the acetonitrile molecules are present.