Electronic Supporting information

The Coordination- and Photochemistry of Copper(I) Complexes: Variation of $\mathbf{N}^{\wedge} \mathbf{N}$ Ligands from Imidazole to Tetrazole

Larissa Bergmann, ${ }^{\text {a }}$ Carolin Braun, ${ }^{\text {b }}$ Martin Nieger, ${ }^{\mathrm{c}}$ and Stefan Bräse*b,d

a cynora GmbH, Werner-von-Siemensstraße 2-6, Bldg. 5110, 76646 Bruchsal, Germany.
b Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. E-mail: braese@kit.edu.
c Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 University of Helsinki, Finland.
d Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

Content

1. Structural studies ... 2
2. Photophysical Data.. 8
3. Theoretical calculations.. 10
4. Crystallographic Data .. 11

1. Structural studies

Figure S1. Molecular structures of $\left[(\mathrm{PyrBimH}) \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4} \quad$ (1), and $\left[(\mathrm{PyrTetH}) \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$ (3), reproduced from Ref. 1^{1} with permission from the Royal Society of Chemistry (displacement parameters are drawn at 50% probability level).

Figure S2. Molecular structure of $\left[(\mathrm{PyrBimH})_{2} \mathrm{Cu}_{2}(\mathrm{dppm})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}\left(\mathbf{4 P F}_{6}\right)$ (displacement parameters are drawn at 50% probability level, solvent and anion omitted for clarity).

Figure S3. Molecular structures of $[(\mathrm{PyrBimH}) \mathrm{Cu}(\mathrm{DPEPhos})] \mathrm{BF}_{4}$ (5) (displacement parameters are drawn at 50% probability level, solvent molecules omitted for clarity).

Figure S4. a) Molecular structure of $[(\mathrm{PyrTetH}) \mathrm{Cu}($ DPEPhos $)]\left[(\mathrm{PyrTet}) \mathrm{Cu}\left(\right.\right.$ DPEPhos $\left.\left.^{2}\right)\right] \mathrm{PF}_{6}$ ($\mathbf{P P F}_{6}$), reproduced from Ref. 1^{1} with permission from the Royal Society of Chemistry (displacement parameters are drawn at 50% probability level).

Figure S5. a) Molecular structure of $\left[(5-(P y r i d i n-2-y l) t e t r a z o l a t e) ~ C u\left(~\left(P P_{3}\right)_{2}\right] \mathrm{BF}_{4}\right.$ (8), reproduced from Ref. 1^{1} with permission from the Royal Society of Chemistry (displacement parameters are drawn at 50% probability level).
a)

b)

Figure S6. a) Molecular structure of 9 (displacement parameters are drawn at 50% probability level, anions omitted for clarity), b) crystal structure of $\left[(\mathrm{PyrTri})_{2} \mathrm{Cu}_{4}(\mathrm{dppm})_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}(9)$ (hydrogen atoms omitted for clarity).
a)

b)

Figure S7. a) Molecular structure of $\mathbf{1 0}$ (displacement parameters are drawn at 50\%
probability level, anions and solvent omitted for clarity), b) crystal structure of $\left[(\mathrm{PyrTet})_{2} \mathrm{Cu}_{4}(\mathrm{dppm})_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathbf{1 0})$ (hydrogen atoms omitted for clarity).

Figure S8. Molecular structures of the mononuclear complex [(PyrTet)Cu(DPEPhos)] (13) (displacement parameters are drawn at 50% probability level).

Table S1. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of the structurally characterized dinuclear complex $\left[(\mathrm{PyrBimH})_{2} \mathrm{Cu}_{2}(\mathrm{dppm})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}\left(\mathbf{P P F}_{6}\right)$.

	bond lengths [\AA]		angles [${ }^{\circ}$]
Cu1-N26	2.083 (3)	N26-Cu1-N40	79.05 (11)
Cu1-N40	2.118 (3)	P1-Cu1-P2A	132.45 (3)
Cu1-P1	2.2087 (8)	$\varphi_{1}{ }^{\text {a }}$	89.21 (9)
Cu1-P2	2.2540 (8)	N26-C34-C35-N40	-3.3 (5)
P1-P2	3.121 (1)	P1-C1-P2	116.47 (15)
F1-H(N33)	2.24 (2)		
F3-H(N33)	2.46 (4)		
F6-H(N33)	2.35 (3)		
F3-H(C31)	2.47		
F6-H(C36)	2.40		

Table S2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of the structurally characterized mononuclear complex $\left[(\mathrm{PyrTet}) \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (8).

	bond lengths [\AA]		angles [${ }^{\circ}$]
Cu1-N1	2.043 (4)	N1-Cu1-N11	79.82 (16)
$\mathrm{Cu} 1-\mathrm{N} 11$	2.118 (4)	P1-Cu1-P2	121.21 (6)
Cu1-P1	2.2397 (16)	$\varphi_{1}{ }^{\text {a }}$	83.4 (1)
Cu1-P2	2.2508 (15)	N1-C5-C6-N11	5.6 (7)
P1-P2	3.912 (2)		
N4-H(C15A)	2.50		

Table S3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of the structurally characterized tetranuclear complexes $\left[\left(\mathrm{N}^{\wedge} \mathrm{N}\right)_{2} \mathrm{Cu}_{4}(\mathrm{dppm})_{4}\right]\left(\mathrm{BF}_{4}\right)_{2} \mathbf{9}$ and $\mathbf{1 0}$.

	9	10
Cu1-N1	2.012 (2)	2.007 (2)
Cu1-N11	2.139 (2)	2.169 (2)
Cu1-P1	2.2528 (8)	2.2354 (8)
Cu1-P3	2.2223 (8)	2.1946 (8)
Cu2-N2	2.079 (2)	2.204 (2)
Cu2-N3A	2.065 (2) ${ }^{\text {a }}$	2.058 (2)
$\mathrm{Cu} 2-\mathrm{P} 2$	2.2722 (8)	2.2940 (8)
$\mathrm{Cu} 2-\mathrm{P} 4$	2.2810 (8)	2.3037 (8)
P1-P2	3.108 (1)	3.154 (1)
P3-P4	3.106 (1)	3.096 (1)
$\mathrm{Cu} 1-\mathrm{Cu} 2$	3.5974 (5)	3.5232 (6)
$\mathrm{Cu} 2-\mathrm{Cu} 2 \mathrm{~A}$	3.9456 (6) ${ }^{\text {b }}$	4.4065 (9)
N1-Cu1-N11	78.66 (9)	78.69 (9)
P1-Cu1-P3	109.28 (3)	132.43 (3)
N2-Cu2-N3A	99.46 (9) ${ }^{\text {c }}$	87.38 (8)
$\mathrm{P} 2-\mathrm{Cu} 2-\mathrm{P} 4$	110.20 (3)	114.12 (3)
φ^{q}	$\begin{array}{ll} 86.59 & (5) / 82.97 \\ (5) & \end{array}$	87.96 (6)/89.76 (6)
N1-C5-C6-	-9.5 (4)	1.9 (4)
N11		
P1-C24-P2	114.74 (15) ${ }^{\text {d }}$	117.20 (14) ${ }^{\text {e }}$
${ }^{\text {a }} \mathrm{Cu} 2-\mathrm{N} 14$; ${ }^{\text {b }}$	Cu2-Cu3; ${ }^{\text {c }}$ 2-Cu2-N	14; ${ }^{\text {P }} 1-\mathrm{C} 35-\mathrm{P} 2 ;{ }^{\text {e }} \mathrm{P}$

2. Photophysical Data

Figure S9. UV-Vis absorption spectra of complexes $\left[\left(\mathrm{N}^{\wedge} \mathrm{N}\right) \mathrm{Cu}\left(\right.\right.$ DPEPhos $\left.\left.^{2}\right)\right] \mathrm{BF}_{4} 5-7$ and free pyridine-amine ligands. The complexes 5-7 and PyrBimH are measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{PyrTriH}$ and PyrTetH in EtOH at a concentration of $10^{-5} \mathrm{~mol} / 1$.

Figure S10. UV-Vis absorption spectra of complexes $\left[\left(\mathrm{N}^{\wedge} \mathrm{N}\right) \mathrm{Cu}\right.$ (DPEPhos)] $\mathbf{1 1} \mathbf{- 1 3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at a concentration of $10^{-5} \mathrm{~mol} / 1$.

Table S5. Excited state lifetimes of the complexes $\left[\left(\mathrm{N}^{\wedge} \mathrm{N}\right) \mathrm{Cu}\left(\mathrm{DPEPhos}^{2}\right)\right] \mathrm{BF}_{4} 5-7$ and $\left[\left(\mathrm{N}^{\wedge} \mathrm{N}\right) \mathrm{Cu}(\right.$ DPEPhos $\left.)\right] \mathbf{1 1 - 1 3}$ in the solid state.

Compound	$\boldsymbol{\tau}_{\text {ave }}{ }^{\mathbf{a}}[\boldsymbol{\mu s}]$	Compound	$\boldsymbol{\tau}_{\text {ave }}{ }^{\mathbf{a}}[\boldsymbol{\mu s}]$
$\mathbf{5}$	5.1	$\mathbf{1 1}$	18.4
$\mathbf{6}$	26.8	$\mathbf{1 2}^{\mathbf{b}}$	$\mathbf{1 3}^{\mathbf{b}}$

${ }^{\text {a }}$ PL lifetime is composed of two components. For simplicity, a weighted-average lifetime was used ($\tau_{\text {ave }}$) and calculated by the equation $\tau_{\text {ave }}=\Sigma \mathrm{A}_{\mathrm{i}} \mathrm{\tau}_{\mathrm{i}} / \Sigma \mathrm{A}_{\mathrm{i}}$ with A_{i} as the pre-exponential factor for the lifetime. ${ }^{\mathrm{b}}$ Reference [1].

3. Theoretical calculations

Table S6. Calculated HOMO and LUMO energies, as well as excitation energies as given by DFT. Geometries are optimized using the BP86 functional. ${ }^{2,3}$ Energies of the frontier orbitals are obtained by DFT calculations using the B3LYP functional ${ }^{4-7}$ with def2-SV(P) basis set, ${ }^{8,9}$ and the excitation energies are calculated by TD-B3LYP.

complex	HOMO $[\mathbf{e V}]$	LUMO $[\mathbf{e V}]$	$\mathbf{\Delta} \mathbf{E}_{\text {номо-lumo }}[\mathbf{e V}]$	Excitation energy [eV]
$\mathbf{5}$	-7.74 eV	-4.63 eV	3.11 eV	2.53
$\mathbf{6}$	-7.85 eV	-4.33 eV	3.52 eV	2.91
$\mathbf{7}$	-8.18 eV	-4.71 eV	3.47 eV	2.87
$\mathbf{1 1}$	-4.75 eV	-1.14 eV	3.61 eV	3.06
$\mathbf{1 2}$	-5.23 eV	-1.19 eV	4.04 eV	3.23
$\mathbf{1 3}$	-5.41 eV	-1.37 eV	4.04 eV	3.28

4. Crystallographic Data

on a Bruker-Nonius APEXII at 123(2) K using MoK α radiation ($\lambda=0.71073 \AA$) ($\mathbf{2 P F}_{6}$) and on a Bruker D8 Venture Diffractometer with Photon100 detector at 123(2) K using $\mathrm{CuK} \alpha$ radiation $(\lambda=1.54178 \AA)(\mathbf{6 , 9})$.

Patterson Methods $\left(\mathbf{1}, \mathbf{2 P F}_{\mathbf{6}}, \mathbf{1 0}\right)$ or Direct Methods $\left(\mathbf{4 P F}_{\mathbf{6}}, \mathbf{5}, \mathbf{6}, \mathbf{9}, \mathbf{1 1}\right)\left(\right.$ SHELXS-97 $\left.{ }^{10}\right)$ were used for structure solution and refinement was carried out using SHELXL-97/2013/2014 ${ }^{11}$ (full-matrix least-squares on F^{2}). Hydrogen atoms were localized by difference electron density determination and refined using a riding model $(\mathrm{H}(\mathrm{N})$ free. Semi-absorption corrections were applied for all structures.

In $\mathbf{2} \mathbf{P F}_{6}$ one phenyl group and the anion PF_{6} are disordered, in $\mathbf{5}$ the solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is disordered about a center of symmetry, in $\mathbf{6}$ the solvent $\mathrm{Et}_{2} \mathrm{O}$ is disordered about a 2-fold axis, in $\mathbf{9}$ the BF_{4} anions are disordered, and in $\mathbf{1 0}$ the solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is disordered.

In 9 the refinement with the listed atoms shows residual electron density due to heavily disordered solvent molecules in one void, which could not be refined with split atoms. The solvent molecules could be $\mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and some additional water. The number and kind of solvent molecules in the void could not be determined. Therefore the option "SQUEEZE"12 of the program package PLATON ${ }^{13}$ was used to create a hkl file taking into account the residual electron density in the void areas. Due to the unknown amount and kind of solvent, the solvent was not included in the unit card.

11 is a weak scattering crystal of bad quality (only 56.6% are observed at $2 \theta=55^{\circ}$), therefore only the conformation and important structural parameters could be discussed reliably.

1: yellow crystals, $\mathrm{C}_{48} \mathrm{H}_{39} \mathrm{CuN}_{3} \mathrm{P}_{2} \cdot \mathrm{BF}_{4}, M=870.11$, crystal size $0.50 \times 0.45 \times 0.40 \mathrm{~mm}, T=$ 123(2) K, triclinic, space group P-1 (No. 2), $a=11.278$ (1) \AA, $b=12.684$ (1) $\AA, c=16.171$ (1) $\AA, \alpha=83.52(1)^{\circ}, \beta=76.41(1)^{\circ}, \gamma=66.60(1)^{\circ}, V=2063.1(3) \AA^{3}, Z=2, \rho($ calc $)=1.401 \mathrm{Mg} \mathrm{m}^{-}$ ${ }^{3}, F(000)=896, \mu=0.664 \mathrm{~mm}^{-1}, 26082$ reflections $\left(2 \theta_{\max }=55^{\circ}\right)$, 9426 unique $\left[\mathrm{R}_{\text {int }}=0.021\right]$, 535 parameters, 1 restraint, $R 1$ (for $7867 I>2 \sigma(I)$) $=0.033$, $w R 2$ (all data) $=0.084, \mathrm{~S}=1.02$, largest diff. peak and hole 0.828 and -0.551 e \AA^{-3}.
$\mathbf{2 P F}_{6}$:colourless crystals, $\mathrm{C}_{43} \mathrm{H}_{36} \mathrm{CuN}_{4} \mathrm{P}_{2} \cdot \mathrm{PF}_{6}, M=879.21$, crystal size $0.50 \times 0.30 \times 0.25$ $\mathrm{mm}, T=123(2) \mathrm{K}$, triclinic, space group P-1 (No. 2), $a=12.0277(5) \AA, b=12.9010(5) \AA, c=$ $14.6324(5) \AA, \alpha=100.140(2)^{\circ}, \beta=113.803(2)^{\circ}, \gamma=94.065(2)^{\circ}, V=2019.36(14) \AA^{3}, Z=2$, $\rho($ calc $)=1.446 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=900, \mu=0.724 \mathrm{~mm}^{-1}, 22436$ reflections $\left(2 \theta_{\max }=55^{\circ}\right), 9143$ unique $\left[\mathrm{R}_{\text {int }}=0.031\right]$, 503 parameters, 681 restraints, $R 1$ (for $8193 I>2 \sigma(I)$) $=0.064$, wR2 (all data) $=0.173, \mathrm{~S}=1.06$, largest diff. peak and hole 1.279 and -1.485 e \AA^{-3} (in disordered PF_{6} anion).

4 PF_{6} :pale yellow crystals, $\mathrm{C}_{74} \mathrm{H}_{62} \mathrm{Cu}_{2} \mathrm{~N}_{6} \mathrm{P}_{4} \cdot 2 \mathrm{PF}_{6} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}, M=1724.44$, crystal size 0.35 $\times 0.15 \times 0.10 \mathrm{~mm}, T=123(2) \mathrm{K}$, monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{n}(\mathrm{No} .14), a=15.024(1) \AA, b$ $=14.129(2) \AA, c=19.206(2) \AA, \beta=108.60(1)^{\circ}, V=3864.0(7) \AA^{3}, Z=2, \rho($ calc $)=1.482 \mathrm{Mg}$ $\mathrm{m}^{-3}, F(000)=1776, \mu=0.756 \mathrm{~mm}^{-1}, 53397$ reflections $\left(2 \theta_{\max }=55^{\circ}\right)$, 8841 unique $\left[\mathrm{R}_{\text {int }}=\right.$ 0.041], 499 parameters, 100 restraints, $R 1$ (for $7092 I>2 \sigma(I))=0.052$, wR2 (all data) $=$ $0.145, \mathrm{~S}=1.03$, largest diff. peak and hole 1.239 and -1.686 e \AA^{-3}.

5:yellow crystals, $\mathrm{C}_{48} \mathrm{H}_{37} \mathrm{CuN}_{3} \mathrm{OP}_{2} \cdot 2 \mathrm{BF}_{4} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}, M=926.56$, crystal size $0.60 \times 0.40 \mathrm{x}$ $0.35 \mathrm{~mm}, T=123(2) \mathrm{K}$, monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{n}$ (No. 14), $a=11.423(1) \AA, b=$ $14.922(2) \AA, c=25.552(3) \AA, \beta=95.86(1)^{\circ}, V=4332.7(9) \AA^{3}, Z=4, \rho($ calc $)=1.420 \mathrm{Mg} \mathrm{m}^{-3}$, $F(000)=1900, \mu=0.698 \mathrm{~mm}^{-1}, 62632$ reflections $\left(2 \theta_{\max }=55^{\circ}\right)$, 9942 unique $\left[\mathrm{R}_{\text {int }}=0.020\right]$, 566 parameters, 22 restraints, $R 1$ (for $8922 I>2 \sigma(I)$) $=0.037$, $w R 2$ (all data) $=0.089, \mathrm{~S}=$ 1.06, largest diff. peak and hole 0.836 and -0.730 e \AA^{-3}.

6:yellow crystals, $\mathrm{C}_{43} \mathrm{H}_{34} \mathrm{CuN}_{4} \mathrm{OP}_{2} \cdot \mathrm{BF}_{4} \cdot 0.5 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}, M=872.09$, crystal size $0.16 \times 0.10 \times$ $0.06 \mathrm{~mm}, T=123(2) \mathrm{K}$, monoclinic, space group C2/c (No. 15), $a=23.3084(8) \AA, b=$ $15.1103(8) \AA, c=23.8529(10) \AA, \beta=98.530(2)^{\circ}, V=8308.0(6) \AA^{3}, Z=8, \rho($ calc $)=1.394$ $\mathrm{Mg} \mathrm{m}^{-3}, F(000)=3592, \mu=1.972 \mathrm{~mm}^{-1}, 56053$ reflections $\left(2 \theta_{\max }=144.2^{\circ}\right), 8177$ unique $\left[\mathrm{R}_{\text {int }}\right.$ $=0.037]$, 553 parameters, 62 restraints, $R 1$ (for $7290 I>2 \sigma(I))=0.031$, $w R 2$ (all data) $=$ $0.084, \mathrm{~S}=1.03$, largest diff. peak and hole 0.664 and -0.338 e \AA^{-3}.

9: colourless crystals, $\mathrm{C}_{114} \mathrm{H}_{98} \mathrm{Cu}_{4} \mathrm{~N}_{8} \mathrm{P}_{8} \cdot 2 \mathrm{BF}_{4}, M=2255.54$, crystal size $0.28 \times 0.20 \times 0.08$ $\mathrm{mm}, T=123(2) \mathrm{K}$, triclinic, space group P-1 (No. 2), $a=12.7716(6) \AA, b=15.7488(7) \AA, c=$ 28.7966(13) $\AA, \alpha=87.544(2)^{\circ}, \beta=80.793(2)^{\circ}, \gamma=71.984(2)^{\circ}, V=5437.0(4) \AA^{3}, Z=2$, $\rho($ calc $)=1.378 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=2312, \mu=2.527 \mathrm{~mm}^{-1}, 68531$ reflections $\left(2 \theta_{\max }=136.6^{\circ}\right)$, 19857 unique $\left[\mathrm{R}_{\text {int }}=0.036\right]$, 1287 parameters, 396 restraints, $R 1$ (for $17026 I>2 \sigma(I)$) $=$ $0.045, w R 2$ (all data) $=0.116, \mathrm{~S}=1.02$, largest diff. peak and hole 1.402 and $-1.037 \mathrm{e} \AA^{-3}$ (in disordered BF_{4} anion).

10: pale green crystals, $\mathrm{C}_{112} \mathrm{H}_{96} \mathrm{Cu}_{4} \mathrm{~N}_{10} \mathrm{P}_{8} \cdot 2 \mathrm{BF}_{4} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}, M=2427.37$, crystal size 0.32 x $0.16 \times 0.08 \mathrm{~mm}, T=123(2) \mathrm{K}$, monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{c}(\mathrm{No} .14), a=15.264(2) \AA, b=$ $22.970(3) \AA, c=17.299(3) \AA, \beta=113.43(1)^{\circ}, V=5565.2(15) \AA^{3}, Z=2, \rho($ calc $)=1.449 \mathrm{Mg}$ $\mathrm{m}^{-3}, F(000)=2480, \mu=1.032 \mathrm{~mm}^{-1}, 56450$ reflections $\left(2 \theta_{\max }=55^{\circ}\right), 12758$ unique $\left[\mathrm{R}_{\text {int }}=\right.$ $0.038]$, 693 parameters, 49 restraints, $R 1$ (for $10071 I>2 \sigma(I))=0.045$, wR2 (all data) $=$ $0.112, \mathrm{~S}=1.03$, largest diff. peak and hole 1.236 and $-0.950 \mathrm{e}^{-3}$ (in disordered solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

11:yellow crystals, $\mathrm{C}_{48} \mathrm{H}_{36} \mathrm{CuN}_{3} \mathrm{OP}_{2}, M=796.28$, crystal size $0.30 \times 0.08 \times 0.04 \mathrm{~mm}, T=$ 123(2) K, monoclinic, space group $\mathrm{P}_{1} / \mathrm{n}$ (No. 14), $a=9.144(1) \AA, b=18.331(2) \AA, c=$ $23.049(2) \AA, \beta=95.93(1)^{\circ}, V=3842.8(7) \AA^{3}, Z=4, \rho($ calc $)=1.376 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=1648$, $\mu=0.694 \mathrm{~mm}^{-1}, 32257$ reflections ($2 \theta_{\text {max }}=55^{\circ}$), 8809 unique $\left[\mathrm{R}_{\text {int }}=0.116\right], 496$ parameters, 777 restraints (general ISOR and rigid group restraints), $R 1$ (for $4986 I>2 \sigma(I)$) $=0.110, w R 2$ (all data) $=0.309, \mathrm{~S}=1.05$, largest diff. peak and hole 2.971 and -1.689 e $\AA^{-3}($ near Cu$)$.

This material is available free of charge via the Internet. Detailed crystallographic data (excluding structure factors) has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC 1047149 (1), CCDC 1047150 (2PF6), CCDC922231 (3) was already published, ${ }^{1}$ CCDC 1047151 (4PF6), CCDC 1047152 (5), CCDC 1047153 (6), CCDC-922233 (7PF6) was already published, ${ }^{1}$ CCDC CCDC-922230 (8) was already published, ${ }^{1}$ CCDC 1047156 (9), CCDC 1047158 (10), CCDC and CCDC 1047160 (11), CCDC-922232 (13) was already published. ${ }^{1}$ Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: int.code+(1223)336-033; e-mail: deposit@ccdc.cam.ac.uk).

References

1. L. Bergmann, J. Friedrichs, M. Mydlak, T. Baumann, M. Nieger and S. Brase, Chem. Соттип., 2013, 49, 6501-6503.
2. A. D. Becke, Phys. Rev. A, 1988, 38, 3098-3100.
3. J. P. Perdew, Phys. Rev. B, 1986, 33, 8822-8824.
4. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
5. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
6. S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200-1211.
7. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623-11627.
8. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
9. D. Rappoport and F. Furche, J. Chem. Phys., 2010, 133, 134105.
10. G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112-122.
11. G. M. Sheldrick, Acta Crystallogr. Sect. C, 2015, 71, 3-8.
12. A. Spek, Acta Crystallogr. Sect. C, 2015, 71, 9-18.
13. A. Spek, Acta Crystallogr. Sect. D, 2009, 65, 148-155.
