Electronic Supplementary Information

In-situ synthesis of magnesium hydroxides modified with

tripodal ligands in an organic medium

Keisuke Muramatsu,^a Yoshiyuki Kuroda,^{*b, #} Atsushi Shimojima,^c Hiroaki Wada^c and Kazuyuki Kuroda^{*c, d}

- a Department of Advanced Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- b Waseda Institute for Advanced Study, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan.
- c Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- d Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo, 169-0051, Japan.
- # Present address: Green Hydrogen Research Center, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan.

The reason for the selection of DMSO as a solvent
Fig. S1 FTIR spectrum of Mg-Tris-NH ₂ (98)
Table S1 Assignments of the infrared absorption bands of Mg-Tris-NH ₂ (98) 4
Fig. S2 FTIR spectrum of $Mg(OH)_2$ in the range of 400–4000 cm ⁻¹
Fig. S3 Photographs of the as-synthesized solutions of (a) Mg-Tris-NH ₂ (90) and (b)
Mg-Tris-NH ₂ (98)
Fig. S4 Schematic illustration of possible configurations of Tris-NH ₂ immobilized
through tridentate linkages on a brucite layer
Fig. S5 Structural model of the surface of Mg-Tris-NH2 layers when Tris-NH2 is
immobilized through bidentate linkages7
Fig. S6 XRD patterns of Mg-Tris-NH ₂ (98) (a) before and (b) after the water treatment. 8
Fig. S7 ¹³ C CP/MAS NMR spectrum of Mg-Tris-NH ₂ (98) after the water treatment 8
Fig. S8 XRD pattern and FTIR spectrum of Mg-Tris-NH ₂ (98) measured after storage in
the atmosphere for about 22 months
Interpretation of the FTIR spectra of Mg-Tris-NH ₂ (98) after long-term storage
Fig. S9 XRD patterns of $Mg(OH)_2$ synthesized in (a) DMSO and (b) water by using
TBAOH as a base 10
Fig. S10 Plots of (a) d_{001} and (b) d_{110} values versus Tris-NH ₂ /Mg ratios 11
Fig. S11 Structural models of the brucite layers modified with $Tris-NH_2$ through (a)
tridentate and (b) bidentate
Fig. S12 (a-c) XRD patterns and (d-f) FTIR spectra of (a, d) Mg-Tris-CH ₂ OH, (b, e)
Mg-Tris-CH ₃ , and (c, f) Mg-Tris-C ₂ H ₅ synthesized in water
Fig. S13 Structural models of the brucite layers modified with (a) Tris-CH ₂ OH, (b)
Tris-CH ₃ , and (c) Tris-CH ₂ CH ₃
Table S2 Compositions of (a) Mg-Tris-CH ₂ OH, (b) Mg-Tris-CH ₃ , and (c)
Mg-Tris-C ₂ H ₅ synthesized in DMSO
Fig. S14 (a–c) XRD patterns and (d–f) FTIR spectra of Mg-Tris-C ₂ H ₅ synthesized in (a,
d) DMSO, (b, e) DMF, and (c, f) DMA
Fig. S15 SEM images of Mg-Tris- C_2H_5 synthesized in (a) DMSO, (b) DMF, and (c)
DMA and (d) Mg-Tris-NH ₂ (98)
Fig. S16 (a-c) AFM images of Mg-Tris-C ₂ H ₅ prepared by using (a) DMSO, (b) DMF,
and (c) DMA as solvents. (d-f) The height profiles on the lines indicated in (a)-(c); (d)
DMSO, (e) DMF, and (f) DMA
References

Contents

The reason for the selection of DMSO as a solvent.

Because the solvent is required to dissolve both MgCl₂·6H₂O and Tris-NH₂ for the synthesis of Mg-Tris-NH₂, the solubilities of MgCl₂·6H₂O and Tris-NH₂ in several organic solvents (i.e., dimethyl sulfoxide (DMSO), *N*,*N*-dimethylformamide (DMF), and *N*,*N*-dimethylacetamide (DMA)) were examined. While each solvent dissolved sufficient amounts of MgCl₂·6H₂O, the solubilities of Tris-NH₂ in these solvents were significantly different. DMSO completely dissolves Tris-NH₂ with a concentration of 1.0 M at room temperature, whereas the saturated concentrations of Tris-NH₂ in DMF and DMA were approximately 0.2 M even under heating. On the basis of these results, we chose DMSO as an optimum solvent for the synthesis of Mg-Tris-NH₂.

Fig. S1 FTIR spectrum of Mg-Tris-NH₂(98).

Wavenumber /cm ⁻¹	Vibration
407	Mg–O lattice vibration
538	Mg–O lattice vibration
625	τCΟ
862	δΗCC
951	δΗCC
1022	vCO
1081	vCO
1146	vCC
1248	vCC
1417	<i>v</i> CO (CO ₃ ^{2–})
1463	δCH_2
1600–1630	δ HNH and δ H ₂ O
2713	Unknown, possibly arising from combinations and/or overtone.
2844	v _{sym} CH
2861	$v_{sym}CH$ (possibly due to the hydroxyl methyl groups which are
	not bonded with the brucite layer)
2935	vasymCH
3392 (broad)	vOH (surface hydroxy groups and H ₂ O) and vNH

Table S1 Assignments of the infrared absorption bands of Mg-Tris-NH₂(98).^[1]

Fig. S2 FTIR spectrum of Mg(OH)₂ in the range of 400–4000 cm⁻¹. Sharp absorption band at 3699 cm⁻¹ is due to free hydroxy groups. The Mg–O lattice vibrational band is observed at around 441 cm⁻¹. In the far-infrared region (not shown), another absorption band due to Mg–O lattice vibration should appear at around 368 cm^{-1.²}

Fig. S3 Photographs of the as-synthesized solutions of (a) Mg-Tris- $NH_2(90)$ and (b) Mg-Tris- $NH_2(98)$.

Fig. S4 (a) Schematic illustration of possible configurations of Tris-NH₂ immobilized through *tridentate* linkages on a brucite layer. Light blue dots represent the surface hydroxy groups in the a–b plane. A tripodal ligand is represented as a triangle whose corners correspond to the oxygen atoms. The triangle O (pink) represents the tripodal ligand at the origin. The triangles A (blue), B (green), and C (red) represent the first, second, and third neighboring positions to triangle O, respectively. (b–d) Structural models of the surface of Mg-Tris-NH₂ layers when Tris-NH₂ is placed according to the models (b) A (Tris-NH₂/Mg = 0.67), (c) B (Tris-NH₂/Mg = 0.50), and (d) C (Tris-NH₂/Mg = 0.29) shown in (a). Yellow octahedrons represent [MgO₆] units. White, gray, and blue spheres represent H, C, and N, respectively. A red circled area indicates a Tris-NH₂ molecule. Reprinted with permission from ref. 2 Copyright 2017 Wiley VCH.

Fig. S5 Structural model of the surface of Mg-Tris-NH₂ layers when Tris-NH₂ is immobilized through *bidentate* linkages after the structural refinement by the DFT method. The arrangement of Tris-NH₂ in this model is the same as that of schematic illustration shown in Fig. S4c. The green, red, blue, gray, and white spheres represent Mg, O, N, C, and H, respectively. The sizes of the spheres represent the corresponding van der Waals diameters. The steric hindrance among the ligands is relaxed by structural flexibility due to some mobility of Tris-NH₂ with bidentate linkages.

Fig. S6 XRD patterns of Mg-Tris-NH₂(98) (a) before and (b) after the water treatment.

Fig. S7 ¹³C CP/MAS NMR spectrum of Mg-Tris-NH₂(98) after the water treatment.

Fig. S8 (a, b) XRD patterns and (c, d) FTIR spectra of Mg-Tris-NH₂(98) measured (a), (c) just after synthesis and (b), (d) after storage in the atmosphere for about 22 months.

Interpretation of the FTIR spectra of Mg-Tris-NH2(98) after long-term storage

In the FTIR spectrum, the absorbance of the characteristic bands due to both inorganic and organic species were mostly retained after the long-term storage (Fig. S8d), whereas some minor changes were observed in the ratio of absorbance in the region of 1000–1100 cm⁻¹ (C–O stretching vibrations). The changes might reflect the hydrolysis of Mg–O–C bonds, though it is difficult to conclude it simply because various absorption bands such as C–O, C–C, and C–N stretching vibrations overlap in this region. The increase in the absorbance in 1400–1500 cm⁻¹ is attributed to adsorption of CO_3^{2-} , which is usual for basic solids. Because the change in the infrared absorption is minor, we concluded that the hydrolysis due to atmospheric moisture is negligible or at least very slow.

Fig. S9 XRD patterns of Mg(OH)₂ synthesized in (a) DMSO and (b) water by using TBAOH as a base.

Fig. S10 Plots of (a) d_{001} and (b) d_{110} values versus Tris-NH₂/Mg ratios.

Fig. S11 Structural models of the brucite layers modified with Tris-NH₂ through (a) tridentate and (b) bidentate linkages after the structural refinement by the DFT method. The difference in the heights of Tris-NH₂ between these configurations was 0.59 Å; therefore, the difference in the d_{001} value will be between 0.59 Å (for the interdigitated structure) and 1.18 Å (for the bilayer structure). The green, red, blue, gray, and white spheres represent Mg, O, N, C, and H, respectively. The sizes of the spheres represent the corresponding van der Waals diameters.

Fig. S12 (a–c) XRD patterns and (d–f) FTIR spectra of (a, d) Mg-Tris-CH₂OH, (b, e) Mg-Tris-CH₃, and (c, f) Mg-Tris-C₂H₅ synthesized in water.

Fig. S13 Structural models of the brucite layers modified with (a) Tris-CH₂OH, (b) Tris-CH₃, and (c) Tris-CH₂CH₃ after the structural refinement by the DFT method. The green, red, gray, and white spheres represent Mg, O, C, and H, respectively. The sizes of the spheres represent the corresponding van der Waals diameters.

Table S2 Compositions of (a) Mg-Tris-CH₂OH, (b) Mg-Tris-CH₃, and (c) Mg-Tris- C_2H_5 synthesized in DMSO.

Sample	Mg (%)	C (%)	H (%)	N (%)	Cl (%)	Tris- <i>R</i> /Mg (mol/mol)	Yield (%)
Mg-Tris-CH ₂ OH	23.5	22.0	4.8	0.1	0.9	0.38	32
Mg-Tris-CH ₃	26.8	18.6	4.3	0.0	0.5	0.28	31
Mg-Tris-C ₂ H ₅	21.7	23.4	4.6	0.1	0.8	0.36	27

Fig. S14 (a–c) XRD patterns and (d–f) FTIR spectra of Mg-Tris-C₂H₅ synthesized in (a, d) DMSO, (b, e) DMF, and (c, f) DMA.

Fig. S15 SEM images of Mg-Tris- C_2H_5 synthesized in (a) DMSO, (b) DMF, and (c) DMA and (d) Mg-Tris- $NH_2(98)$. The lateral size of primary particles is around 10 nm in all samples(a)–(c). Powdery samples were dispersed in ethanol and evaporated on a carbon-coated Cu grid for the observation. The image of (d) was obtained at an accelerating voltage of 3.0 kV.

Fig. S16 (a–c) AFM images of Mg-Tris- C_2H_5 prepared by using (a) DMSO, (b) DMF, and (c) DMA as solvents. (d–f) The height profiles on the lines indicated in (a)–(c); (d) DMSO, (e) DMF, and (f) DMA.

References

- 1. S. Schroetter and D. Bougeard, Ber. Bunsenges. Phys. Chem. 1987, 91, 1217-1221.
- 2. Y. Kuroda, T. Koichi, K. Muramatsu, K. Yamaguchi, N. Mizuno, A. Shimojima, H. Wada and K. Kuroda, *Chem. Eur. J.*, 2017, **23**, 5023–5032.