Supporting Information to Dalton Transactions

Molten BaCN₂ for the sintering and crystal growth of dielectric oxynitride perovskite $Sr_{1-x}Ba_xTaO_2N$ (x = 0.04~0.23)

Akira Hosono^{1,*}, Yuji Masubuchi^{2,*}, Takashi Endo¹, Shinichi Kikkawa²

Affiliations:

¹Graduate School of Chemical Science and Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan

²Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan

*Corresponding authors:

Akira Hosono; address: Graduate School of Chemical Science and Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan; Tel/Fax: +81-(0)11-706-6739/6740; E-mail: ezohakitaguni@frontier.hokudai.ac.jp

Associate professor Yuji Masubuchi; address: Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan; Tel: +81-(0)11-706-6742; E-mail: yuji-mas@eng.hokudai.ac.jp

Fig. S1 XRD patterns of $(1)\alpha$ -SrCN₂ and $(2)BaCN_2$ powders for (a)as-prepared and (b)the annealed samples. α -SrCN₂ and BaCN₂ were annealed at approximately 1100 and 900 °C for 5 h. Indexed diffraction peaks shown in (1)(a), (2)(a), and (2)(b) are α -SrCN₂ (JCPDS 51-541), tetragonal new phase of BaCN₂²⁶⁾, and rhombohedral BaCN₂ (JCPDS 51-542), respectively. Inverse triangles, diamonds, circles, arrows, and question marks indicate Sr(OH)₂ (ICSD 26029), graphite (ICSD 53781), SrC₂ (JCPDS 3-0542), Ba(OH)₂ (ICSD 56828), and unknown phases, respectively.