Electron Supporting Information

Rare-earth metal mediated PhC≡N insertion into *N,N*bis(trimethylsilyl)naphthalene-1,8-diamido dianion – a synthetic approach to complexes coordinated by *ansa*-bridged amido-amidinato ligand. Synthesis, structures and catalytic activity in ring-opening polymerization of *rac*-lactide

Dmitry M. Lyubov,^{*a*} Anton V. Cherkasov,^{*a*} Georgy K. Fukin,^{*a*} Konstantin A. Lyssenko,^{*b*} Elena A. Rychagova,^{*a*} Sergey Yu. Ketkov,^{*a*} Alexander A. Trifonov^{*a*,*b*,*}

^{*a*}Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 630950, Nizhny Novgorod (Russia) Fax: 007831 4627497; Tel: 007 831 4623532; E-mail: trif@iomc.ras.ru ^{*b*}Institute of Organoelement compounds of Russian Academy of Sciences, Vavilova str. 28, 119334, Moscow, Russia.

Contents

Fig 1. ¹H NMR spectrum of $1,8-C_{10}H_6[N(SiMe_3)Li(OEt_2)]_2$ (1^{Et20}).

Fig 2. ¹³C{¹H} NMR spectrum of 1,8-C₁₀H₆[N(SiMe₃)Li(OEt₂)]₂ (1^{Et2O}).

Fig 3. ⁷Li{¹H} NMR spectrum of 1,8- $C_{10}H_6[N(SiMe_3)Li(OEt_2)]_2$ (1^{Et2O}).

Fig 4. ¹H NMR spectrum of $1,8-C_{10}H_6[N(SiMe_3)Li(TMEDA)]_2$ (1^{TMEDA}).

Fig 5. ${}^{13}C{}^{1}H$ NMR spectrum of 1,8-C₁₀H₆[N(SiMe₃)Li(TMEDA)]₂ (1^{TMEDA}).

Fig 6. ⁷Li{¹H} NMR spectrum of 1,8- $C_{10}H_6[N(SiMe_3)Li(TMEDA)]_2$ (1^{TMEDA}).

Fig 7. ¹H NMR spectrum of $1,8-C_{10}H_6[N(SiMe_3)Li(N=CPh)(OEt_2)][N(SiMe_3)Li(OEt_2)]$ (2^{Et2O}).

Fig 8. ¹³C{¹H} NMR spectrum of 1,8-C₁₀H₆[N(SiMe₃)Li(N=CPh)(OEt₂)][N(SiMe₃)Li(OEt₂)] (2^{Et2O}).

Fig 9. ⁷Li{¹H} NMR spectrum of 1,8-C₁₀H₆[N(SiMe₃)Li(N=CPh)(OEt₂)][N(SiMe₃)Li(OEt₂)] (2^{Et2O}).

Fig 10. ¹H NMR spectrum of $1,8-C_{10}H_6[N(SiMe_3)Li(N=CPh)][N(SiMe_3)Li(TMEDA)]$ (2^{TMEDA}).

Fig 11. ¹³C{¹H} NMR spectrum of 1,8-C₁₀H₆[N(SiMe₃)Li(N=CPh)][N(SiMe₃)Li(TMEDA)] (2^{TMEDA}).

```
Fig 12. <sup>7</sup>Li{<sup>1</sup>H} NMR spectrum of 1,8-C<sub>10</sub>H<sub>6</sub>[N(SiMe<sub>3</sub>)Li(N=CPh)][N(SiMe<sub>3</sub>)Li(TMEDA)] (2<sup>TMEDA</sup>).
```

Fig. 13. ¹H NMR spectrum of $[\{1,8-C_{10}H_6[NSiMe_3]]NC(Ph)NSiMe_3]\}\{1,8-C_{10}H_6[N(H)SiMe_3][NC(Ph)NSiMe_3]\}YCl][Li(THF)_4]$ (3Y).

Fig. 14. ¹³C{¹H} NMR spectrum of $[\{1,8-C_{10}H_6[NSiMe_3][NC(Ph)NSiMe_3]\}\{1,8-C_{10}H_6[N(H)SiMe_3][NC(Ph)NSiMe_3]\}YCl][Li(THF)_4] (3Y).$

Fig. 15. $^{7}Li\{^{1}H\}$ NMR spectrum of $[\{1,8-C_{10}H_{6}[NSiMe_{3}]]NC(Ph)NSiMe_{3}]\}\{1,8-C_{10}H_{6}[N(H)SiMe_{3}][NC(Ph)NSiMe_{3}]\}YCl][Li(THF)_{4}]$ (**3**Y).

Fig. 16. ¹H NMR spectrum of $\{1,8-C_{10}H_6[NSiMe_3][NC(Ph)NSiMe_3)]\}$ YCl(TMEDA) (4).

Fig. 17. ¹³C{¹H} NMR spectrum of {1,8- $C_{10}H_6$ [NSiMe₃][NC(Ph)NSiMe₃)]}YCl(TMEDA)(4).

Fig. 18. ¹H NMR spectrum of $[\{1,8-C_{10}H_6[NSiMe_3][NC(Ph)NSiMe_3]\}\{1,8-C_{10}H_6[N(H)SiMe_3][NC(Ph)NSiMe_3]\}$ YOtBu][Li(THF)₄] (7).

Fig. 19. ¹³C{¹H} NMR spectrum of $[\{1,8-C_{10}H_6[NSiMe_3][NC(Ph)NSiMe_3]\}\{1,8-C_{10}H_6[N(H)SiMe_3][NC(Ph)NSiMe_3]\}$ YOtBu][Li(THF)₄] (7).

Fig. 20. $^{7}Li{^{1}H}$ NMR spectrum of $[{1,8-C_{10}H_6[NSiMe_3][NC(Ph)NSiMe_3]}{1,8-C_{10}H_6[N(H)SiMe_3][NC(Ph)NSiMe_3]}YOtBu][Li(THF)_4] (7).$

Fig. 21. ¹H NMR spectrum of $\{1,8-C_{10}H_6[NSiMe_3][NC(Ph)NSiMe_3]\}$ YOtBu(TMEDA) (8).

Fig. 22. ¹³C $\{^{1}H\}$ NMR spectrum of $\{1,8-C_{10}H_{6}[NSiMe_{3}][NC(Ph)NSiMe_{3}]\}$ YOtBu(TMEDA) (8).

Fig. 23. Isosurfaces (isovalue 0.02) of the frontier molecular orbitals in complexes 2' and 4'.

Table S1. Crystal data and structure refinement for complexes 2^{Et2O}, 2^{TMEDA}, 3Y, 3Sm, 4, 7, 8.

Fig 1. ¹H NMR spectrum of 1,8-C₁₀H₆[N(SiMe₃)Li(OEt₂)]₂ (1^{Et2O}) (400 MHz, C₆D₆, 293 K).

Fig 2. ${}^{13}C{}^{1}H$ NMR spectrum of 1,8-C₁₀H₆[N(SiMe₃)Li(OEt₂)]₂ (1^{Et2O}) (100 MHz, C₆D₆, 293 K).

Fig 6. ⁷Li{¹H} NMR spectrum of 1,8-C₁₀H₆[N(SiMe₃)Li(TMEDA)]₂ ($\mathbf{1}^{TMEDA}$) (155.5 MHz, C₆D₆, 293 K).

(400 MHz, C₆D₆, 293 K).

Fig 8. ¹³C{¹H} NMR spectrum of 1,8-C₁₀H₆[N(S1Me₃)L1(N=CPh)(OEt₂)][N(S1Me₃)L1(OEt₂)] (2^{Et2O}) (100 MHz, C₆D₆, 293 K).

Fig 9. ⁷Li{¹H} NMR spectrum of 1,8-C₁₀H₆[N(SiMe₃)Li(N=CPh)(OEt₂)][N(SiMe₃)Li(OEt₂)] (2^{Et2O}) (155.5 MHz, C₆D₆, 293 K).

Fig 10. ¹H NMR spectrum of $1,8-C_{10}H_6[N(SiMe_3)Li(N\equiv CPh)][N(SiMe_3)Li(TMEDA)]$ (2^{TMEDA}) (400 MHz, C₆D₆, 293 K).

Fig 11. ¹³C{¹H} NMR spectrum of $1,8-C_{10}H_6[N(SiMe_3)Li(N=CPh)][N(SiMe_3)Li(TMEDA)]$ (2^{TMEDA}) (100 MHz, C₆D₆, 293 K).

Fig 12. ⁷Li{¹H} NMR spectrum of $1,8-C_{10}H_6[N(SiMe_3)Li(N=CPh)][N(SiMe_3)Li(TMEDA)]$ (2^{TMEDA}) (155.5 MHz, C₆D₆, 293 K).

C₁₀H₆[N(H)SiMe₃][NC(Ph)NSiMe₃]}YCl][Li(THF)₄] (**3**Y) (77.7 MHz, C₆D₆, 293 K).

Fig. 16. ¹H NMR spectrum of {1,8-C₁₀H₆[NSiMe₃][NC(Ph)NSiMe₃)]}YCl(TMEDA) (4) (400 NHz, C₆D₆, 293 K).

Fig. 17. ¹³C{¹H} NMR spectrum of {1,8-C₁₀H₆[NSiMe₃][NC(Ph)NSiMe₃)]}YCl(TMEDA) (4) (100 MHz, C₆D₆, 293 K).

Fig. 19. ¹³C{¹H} NMR spectrum of $[\{1,8-C_{10}H_6[NSiMe_3][NC(Ph)NSiMe_3]\}\{1,8-C_{10}H_6[N(H)SiMe_3][NC(Ph)NSiMe_3]\}$ YOtBu][Li(THF)₄] (7).

MHz, C₆D₆, 293 K).

Fig. 22. ¹³C{¹H} NMR spectrum of {1,8- $C_{10}H_6$ [NSiMe₃][NC(Ph)NSiMe₃]}YOtBu(TMEDA) (8) (50 MHz, C_6D_6 , 293 K).

Fig. 23. Isosurfaces (isovalue 0.02) of the frontier molecular orbitals in complexes 2' (top) and4' (bottom)

Full Gaussian 09 reference

Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

Table S1. Crystal data and structure refinement details for complexes 2^{Et2O}, 2^{TMEDA}, 3Y, 3Sm, 4, 7, 8.

	2 ^{Et2O}	2 ^{TMEDA}	3Y	38m	4	7	8
Empirical formula	C ₃₁ H ₄₉ Li ₂ N ₃ O ₂ Si ₂	$C_{29}H_{45}Li_2N_5Si_2 \cdot (C_7H_8)_{1.5}$	C ₆₂ H ₉₁ ClLiN ₆ O ₄ Si ₄ Y	$C_{58}H_{89}ClLiN_6O_6Si_4Sm \cdot (C_4H_{10}O_2)$	C ₂₉ H ₄₅ ClN ₅ Si ₂ Y	C ₆₆ H ₁₀₀ LiN ₆ O ₅ Si ₄ Y	C ₃₃ H ₅₄ N ₅ OSi ₂ Y
FW	565.79	671.96	1228.07	1361.57	644.24	1265.73	681.90
Т, К	100(2)	100(2)	100(2)	100(2)	100(2)	150(2)	200(2)
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_{l}/c$	P-1	$P2_{l}/c$	P-1	$P2_{l}/c$	$P2_{I}/n$
Unit cell dimensions	$ \begin{array}{l} a\ [\mathring{A}\] = 10.3401(5) \\ b\ [\mathring{A}\] = 22.3949(11) \\ c\ [\mathring{A}\] = 12.6499(7) \\ a\ [\degree] = 90 \\ \beta\ [\degree] = 92.4540(10) \\ \gamma\ [\degree] = 90 \end{array} $	a $[Å] = 10.578(2)$ b $[Å] = 35.496(7)$ c $[Å] = 11.439(2)$ α $[°] = 90$ β $[°] = 102.82(3)$ γ $[°] = 90$	a $[Å] = 13.4602(5)$ b $[Å] = 14.5208(5)$ c $[Å] = 17.8410(7)$ a $[°] = 82.8080(10)$ $\beta [°] = 78.5910(10)$ $\gamma [°] = 86.2320(10)$	a $[\mathring{A}] = 12.4061(4)$ b $[\mathring{A}] = 27.5182(9)$ c $[\mathring{A}] = 20.9997(7)$ $\alpha [^{\circ}] = 90$ $\beta [^{\circ}] = 95.3740(10)$ $\gamma [^{\circ}] = 90$	a [Å] = 8.7689(6) b [Å] = 11.2424(8) c [Å] = 17.3360(12) α [°] = 87.6876(15) β [°] = 78.3070(15) γ [°] = 76.5725(14)	$ \begin{array}{l} a\ [\mathring{A}\] = 13.9163(11) \\ b\ [\mathring{A}\] = 14.9401(13) \\ c\ [\mathring{A}\] = 34.281(3) \\ a\ [\degree] = 90 \\ \beta\ [\degree] = 97.727(2) \\ \gamma\ [\degree] = 90 \end{array} $	a $[\mathring{A}] = 11.4113(7)$ b $[\mathring{A}] = 27.1287(14)$ c $[\mathring{A}] = 12.0915(8)$ $\alpha [^{\circ}] = 90$ $\beta [^{\circ}] = 97.749(5)$ $\gamma [^{\circ}] = 90$
V, Å ³	3389.3(3)	4188.4(15)	3388.3(2)	7137.6(4)	1627.8(2)	7062.6(10)	3709.0(4)
Ζ	4	4	2	4	2	2	4
d_{calc} , Mg/m ³	1.109	1.066	1.204	1.267	1.314	1.190	1.221
μ , mm ⁻¹	0.134	0.116	1.017	0.979	1.973	0.943	1.668
F(000)	1224	1452	1304	2860	676	2704	1448
Crystal size, mm	0.43×0.38×0.20	0.32×0.15×0.12	0.38×0.26×0.12	0.46×0.16×0.11	0.31×0.20×0.17	0.33×0.21×0.17	0.40×0.25×0.15
θ range for data collection, [°]	2.17-26.00	1.91-27.00	2.12-27.10	1.95-25.04	1.86-27.00	1.77-25.10	3.00-28.70
Index ranges	$ \begin{array}{c} -12 \leq h \leq 12 \\ -27 \leq k \leq 27 \\ -18 \leq l \leq 17 \end{array} $	$-13 \le h \le 13$ $-42 \le k \le 45$ $-14 \le 1 \le 12$	$-17 \le h \le 17$ $-18 \le k \le 18$ $-22 \le 1 \le 22$	$-14 \le h \le 14$ $-32 \le k \le 32$ $-24 \le 1 \le 24$	$-11 \le h \le 10$ $-14 \le k \le 14$ $-22 \le 1 \le 22$	$-16 \le h \le 14 -16 \le k \le 17 -35 \le 1 \le 40$	$-10 \le h \le 15$ $-36 \le k \le 29$ $-16 \le 1 \le 16$
Reflns collected	28710	25808	31883	56772	14047	38674	21981
Independent reflns (R_{int})	6649 (0.0269)	9145 (0.0373)	14832 (0.0482)	12602 (0.0543)	7039 (0.0304)	12537 (0.1486)	9572 (0.0470)
Completeness to θ	99.8	99.9	99.2	99.9	99.2	99.5	99.9
Data / restraints / parameters	6649 / 0 / 371	9145 / 220 / 512	14832 / 106 / 774	12602 / 612 / 868	7039 / 0 / 353	12537 / 0 / 767	9872 / 123 / 485
GOF on F^2	1.047	1.066	1.016	1.045	1.034	0.953	1.065
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0393$ $wR_2 = 0.0979$	$R_1 = 0.0680$ $wR_2 = 0.1462$	$R_1 = 0.0529$ $wR_2 = 0.1081$	$R_1 = 0.0617$ $wR_2 = 0.1626$	$R_1 = 0.0376$ $wR_2 = 0.0822$	$R_1 = 0.0710 \\ wR_2 = 0.1381$	$R_1 = 0.0533$ $wR_2 = 0.0853$
<i>R</i> indices (all data)	$R_1 = 0.0473 \\ wR_2 = 0.1039$	$R_1 = 0.0923$ $wR_2 = 0.1595$	$R_1 = 0.0937$ $wR_2 = 0.1239$	$R_1 = 0.0835$ $wR_2 = 0.1798$	$R_1 = 0.0553$ $wR_2 = 0.886$	$R_1 = 0.1715 wR_2 = 0.1746$	$ \begin{array}{c} R_1 = 0.0911 \\ wR_2 = 0.0955 \end{array} $
Largest diff peak and hole, [e Å ³]	0.38 and -0.20	0.81 and -0.43	0.65 and -0.33	1.81 and -1.04	0.92 and -0.58	0.71 and -0.34	0.39 and -0.41