Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting materials

Diversified polyoxovanadate derivatives obtained by copper(I)catalysed azide–alkyne cycloaddition reaction: Their synthesis and structural characterization

Hongli Jia, a Qi Li, Aruuhan Bayaguud, Yichao Huang, Shan She, Kun Chen, and Yongge Wei*ab

Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P R China

Table of Contents

- Section 1 Experimental details
- Section 1 Additional Measurements
- Section 2 Additional Structural Figures
- Section 3 Additional Crystallography Data

1. Experimental details

Synthesis of (Bu₄N)₂[V₆O₁₃{(OCH₂)₃CCH₂N₃}₂], compound 1: Compound 1 was prepared by heating a mixture of (Bu₄N)₂[V₆O₁₃{(OCH₂)₃CCH₂SO₃C₇H₄}₂]·2.5CH₃CN (0.314 g, 0.2 mmol) and NaN₃ (0.104 g, 1.6 mmol) in 10 mL of dry DMF at 80 °C for 2 days. The reaction was monitored by IR spectroscopy and ESI-MS. After the reaction was completed, the mixture solution was cooled down to room temperature, and then, the solvent was completely evaporated out. A minimal amount of CH₃CN was added to the remaining solid to dissolve all the POM materials, and subsequently, the suspension was centrifuged. The precipitates containing excess NaN₃ and the formed NaOTs were discarded. Suitable orange-red block single crystals for X-ray diffraction were grown by slow diffusion of diethyl ether into their acetonitrile solution. Compound 1 was easily crystallized in the mother liquor conveniently by addition of a small amount of acetonitrile and water. The yield was 68% based on V. Calcd: V 23. 25, C 38.38, H 6.75, N 8.52, Found: V 22.97, C 38.33, H 6.72, N 8.48. IR(cm⁻¹): 3361 w, 2921 m, 2851 m, 1659 w, 1633 m, 1470 m, 1363 w, 1176 m, 1130 w, 1065 m, 952 vs, 804 s, 790 s, 717 s. ¹H NMR (400 MHz, DMSO– d_6 , standardized by solvent peak): $\delta =$ 0.90 (24H, t, J = 7.2 Hz, TBA-H), 1.28 (16H, sextet, TBA-H), 1.53 (16H, quintet, TBA-H), 3.13 (16H, t, J = 8.4 Hz, TBA-H), 3.69 (s, 4H, N₃-CH₂-C), 4.83 (s, 12H, O-CH₂-C). ¹³C NMR (400MHz, DMSO-d₆, standardized by solvent peak): δ = 83.62, 58.14, 52.43, 49.57, 23.73, 19.76, 14.06. ESI-MS: m/z (%): 1330.00 (10.71%) {(Bu₄N)[V₆O₁₃{(OCH₂)₃CCH₂N₃}₂]}, 414.85 (98.89%) [V₆O₁₃{(OCH₂)₃CCH₂N₃}₂]²⁻.

2. Additional Structural Figures

Fig.S1. The POMs archetype of hybrids prepared by click chemistry. Color code: light blue: W, teal: Mo, orange: V.

Fig.S2 The hydrogen bonds in compound 2.

Fig. S3 The hydrogen bonds in compound 3.

Fig. S4 The hydrogen bonds in compound 4.

Fig. S5 The hydrogen bonds in compound 5.

Fig. S6 The 1D chain formed through C–H···O hydrogen bonds in compound **5**.

3. Additional Measurements

3.1 IR spectra

Fig. S7 IR spectrum of compound 2.

Fig. S8 IR spectrum of compound 3.

Fig. S9 IR spectrum of compound 4.

Fig. S10 IR spectrum of compound 5.

3.2 ESI-MS spectra

Fig. S11 ESI-MS result of compound 2.

Fig. S12 ESI-MS result of compound 3.

Fig. S13 ESI-MS result of compound 4.

Fig. S14 ESI-MS result of compound 5.

3.3. XRD characterization

Fig. S15 The simulated (black) and experimental (red) powder XRD patterns for compound 2.

Fig. S16 The simulated (black) and experimental (red) powder XRD patterns for compound 3.

Fig.S17 The simulated (black) and experimental (red) powder XRD patterns for compound 4.

Fig.S18 The simulated (black) and experimental (red) powder XRD patterns for compound 5.

3.4 NMR Spectra

Fig.S19 ¹H NMR spectrum of compound 2 in CD₃CN at 400 MH

Fig.20 ¹H NMR spectrum of compound 3 in DMSO-d₆ at 400 MHz.

Fig.S21 ¹H NMR spectrum of compound 4 in CD₃CN at 400 MHz.

Fig.S22 ¹H NMR spectrum of compound 5 in CD₃CN at 400 MHz.

Fig. S23. UV-Vis spectra of compounds 2-5.

4. Additional Crystallography Data

Bond	Lengths (Å)	Bond	Lengths (Å)
V(1)-O(1)	1.598(26)	V(5)-O(5)	1.6060 (29)
V(1)-O(11)	1.822(25)	V(5)-O(9)	1.8086 (28)
V(1)-O(10)	1.8414 (27)	V(5)-O(12)	1.8525 (28)
V(1)-O(18)	2.0143 (25)	V(5)-O(17)	2.0095 (26)
V(1)-O(16)	2.0324 (23)	V(5)-O(18)	2.0230 (24)
V(1)-O(19)	2.2321 (22)	V(5)-O(19)	2.2459 (23)
V(2)-O(2)	1.6007 (26)	V(6)-O(6)	1.6039 (29)
V(2)-O(7)	1.8061 (28)	V(6)-O(8)	1.8072 (28)
V(2)-O(8)	1.8061 (28)	V(6)-O(9)	1.8586 (31)
V(2)-O(16)	1.9978 (24)	V(6)-O(15)	2.0014 (30)
V(2)-O(17)	2.0384 (27)	V(6)-O(15)	2.0372 (26)
V(2)-O(19)	2.2456 (21)	V(6)-O(1)	2.2389 (22)
V(3)-O(3)	1.5987 (28)	C(6)-C(7)	1.348 (88)
V(3)-O(10)	1.8043 (28)	C(6)-N(1)	1.372 (92)
V(3)-O(7)	1.8539 (25)	N(1)-N(2)	1.331 (74)
V(3)-O(14)	2.0079 (23)	N(2)-N(3)	1.344(107)
V(3)-O(15)	2.0371 (29)	C(5)-N(1)	1.440(66)
V(3)-O(19)	2.2333 (23)	C(1)-C(4)	1.528(53)
V(4)-O(4)	1.6094 (26)	C(1)-C(3)	1.532(59)
V(4)-O(12)	1.8083 (29)	C(1)-C(2)	1.512(60)
V(4)-O(11)	1.8555 (27)	C(4)-O(15)	1.436(42)
V(4)-O(13)	2.0014 (27)	C(3)-O(14)	1.433(43)
V(4)-O(14)	2.0233 (26)	C(2)-O(13)	1.438(44)
V(4)-O(19)	2.2469 (21)		
Bond	Angles (°)	Bond	Angles (°)
C(5)-N(2)-N(1)	120.67 (41)	C(1)-C(5)-N(1)	115.31 (35)
C(5)-N(1)-C(6)	127.29 (42)		

Table S1 Selected Bond Lengths (Å) and Angles (°) for compound 2.

 Table S2 Selected Bond Lengths (Å) and Angles (°) for compound 3.

Bond	Lengths (Å)	Bond	Lengths (Å)
V(1)-O(12)	1.609 (23)	V(3)-O(11)	2.025 (22)
V(1)-O(11)	2.005(22)	V(3)-O(6)	2.237 (5)
V(1)-O(5)	2.029(23)	C(6)-N(3)	1.437(53)
V(1)-O(6)	2.234(5)	C(5)-N(3)	1.346(56)
V(2)-O(3)	1.606(25)	C(4)-C(5)	1.376(60)
V(2)-O(4)	1.845(24)	C(4)-N(1)	1.371(60)
V(2)-O(5)	2.004(22)	N(1)-N(2)	1.310(64)
V(2)-O(7)	2.037 (22)	N(2)-N(3)	1.349(50)
V(2)-O(6)	2.246 (5)	C(3)-C(4)	1.477(70)

V(3)-O(10)	1.602 (23)	C(3)-O(2)	1.183(60)
V(3)-O(8)	1.801 (24)	C(3)-O(1)	1.327(59)
V(3)-O(9)	1.839 (24)	C(2)-O(1)	1.460(71)
V(3)-O(7)	2.007 (22)	C(1)-C(2)	1.409(90)
Bond	Angles (°)	Bond	Angles (°)
C(3)-C(4)-C(5)	128.86 (41)	N(2)-N(3)-C(6)	121.96 (36)
C(3)-C(4)-N(1)	123.12 (40)	N(2)-N(3)-C(5)	110.70 (37)
C(1)-C(2)-O(1)	111.61 (52)	C(4)-C(5)-N(3)	104.93 (37)
C(5)-N(3)-C(6)	127.29 (34)	C(8)-C(6)-N(3)	116.29 (32)

Table S3 Selected Bond Lengths (Å) and Angles (°) for compound 4.

Bond	Lengths (Å)	Bond	Lengths (Å)
V(1)-O(5)	1.6008 (40)	C(1)-C(2)	1.5059 (124)
V(1)-O(7)	1.8099 (39)	C(2)-C(3)	1.3411 (146)
V(1)-O(8)	1.8470 (31)	C(2)-C(7)	1.3694 (141)
V(1)-O(4)	2.0140 (28)	C(3)-C(4)	1.4328 (132)
V(1)-O(2)	2.0297 (37)	C(4)-C(5)	1.3836 (111)
V(1)-O(6)	2.2458 (9)	C(5)-C(6)	1.3829 (92)
V(2)-O(10)	1.6012 (30)	C(6)-C(7)	1.3813 (105)
V(2)-O(8)	1.8106 (38)	C(5)-C(8)	1.4692 (92)
V(2)-O(9)	1.8285 (39)	C(8)-C(9)	1.3554 (86)
V(2)-O(1)	2.0071 (35)	C(8)-N(1)	1.3604 (75)
V(2)-O(4)	2.0233 (34)	N(1)-N(2)	1.3115 (87)
V(2)-O(6)	2.2256 (6)	N(2)-N(3)	1.3173 (70)
V(3)-O(3)	1.6095 (39)	N(3)-C(10)	1.4259 (83)
V(3)-O(9)	1.8109 (33)	N(3)-C(9)	1.3646 (72)
V(3)-O(7)	1.8420 (41)	C(10)-C(12)	1.5589 (64)
V(3)-O(2)	2.0109 (38)		
V(3)-O(1)	2.0252 (29)		
V(3)-O(6)	2.2417 (8)		
Bond	Angles (°)	Bond	Angles (°)
C(3)-C(2)-C(7)	118.66 (88)	C(9)-N(3)-N(2)	110.38 (54)
C(3)-C(4)-C(5)	118.86 (86)	N(1)-N(2)-N(3)	107.77 (48)
C(4)-C(5)-C(6)	118.43 (73)	N(2)-N(1)-C(8)	109.08 (54)
C(8)-C(9)-N(3)	105.05 (49)	N(8)-C(9)-N(1)	107.71 (57)
N(3)-C(10)-C(12)	115.00 (50)		

Table S4 Selected Bond Lengths (Å) and Angles (°) for compound 5.

tuble 51 Selected Dona Denguis (1) and Angles () for compound 5.				
Bond	Lengths (Å)	Bond	Lengths (Å)	
V(1)-O(9)	1.5959 (28)	C(1)-Cl(1)	1.7533 (73)	
V(1)-O(10)	1.8060 (35)	C(1)-C(2)	1.3288 (112)	
V(1)-O(8)	1.8272 (35)	C(1)-C(6)	1.3596 (114)	
V(1)-O(1)	1.9994 (32)	C(2)-C(3)	1.4171 (103)	

V(1)-O(3)	2.0180 (31)	C(3)-C(4)	1.3766 (90)
V(1)-O(7)	2.2236 (6)	C(4)-C(5)	1.3681 (75)
V(2)-O(6)	1.5915 (39)	C(5)-C(6)	1.3947 (89)
V(2)-O(8)	1.8111 (30)	C(7)-C(4)	1.4623 (83)
V(2)-O(5)	1.8454 (37)	C(7)-C(8)	1.3672 (80)
V(2)-O(2)	2.0087 (33)	C(7)-N(1)	1.3562 (66)
V(2)-O(1)	2.0271 (26)	N(1)-N(2)	1.3349 (77)
V(2)-O(7)	2.2441 (8)	N(2)-N(3)	1.3259 (62)
V(3)-O(4)	1.5991 (36)	N(3)-C(9)	1.4254 (71)
V(3)-O(5)	1.7980 (37)	N(3)-C(8)	1.3442 (64)
V(3)-O(10)	1.8552 (28)	C(9)-C(10)	1.5561 (63)
V(3)-O(3)	2.0169 (25)		
V(3)-O(2)	2.0328 (33)		
V(3)-O(7)	2.2480 (8)		
Bond	Angles (°)	Bond	Angles (°)
C(3)-C(2)-C(7)	118.66 (88)	C(9)-N(3)-N(2)	110.38 (54)
C(3)-C(4)-C(5)	118.86 (86)	N(1)-N(2)-N(3)	107.77 (48)
C(4)-C(5)-C(6)	118.43 (73)	N(2)-N(1)-C(8)	109.08 (54)
C(8)-C(9)- N(3)	105.05 (49)	N(8)-C(9)- N(1)	107.71 (0.57)
N(3)-C(10)-C(12)	115.00 (50)		

Selected Torsion Angle (°)

Table S5: Selected Torsion Angle (°) for compounds 3.				
Compound 3				
C3 - O1 - C2 - C1	85.92 (69)	N3 - N2 - N1 - C4	-1.26 (52)	

Table S6. Hydrogen bond distances and angles of compound 2-5 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
Compound 2				
С6-Н6О12	0.93	2.35	3.045	130.44
C14-H14O12	0.93	2.42	3.078	127.91
Compound 3				
C6-H6BO10	0.97	2.32	3.199	149.83
Compound 4				
C10-H10BO7	0.970	2.339	3.145	140.05
Compound 5				
С9-Н9АО9	0.970	2.378	3.165	137.91