Electronic Supplementary Information for:

Tin(IV) Chalcogenoether Complexes as Single Source Precursors for the Chemical Vapour Deposition of SnE₂ and SnE (E = S, Se) Thin Films

Chitra Gurnani^a, Samantha L. Hawken^b, Andrew L. Hector^b, Ruomeng Huang^c, Marek Jura^d, William Levason^b, James Perkins^b, Gillian Reid^b and Gavin B. G. Stenning^d

- a. School of Natural Sciences, Mahindra Ecole Centrale, Hyderabad, India.
- b. Chemistry, University of Southampton, Southampton SO17 1BJ, UK; email:

G.Reid@soton.ac.uk

- c. Electronic and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.
- d. ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK

Figure S1: TGA profiles from precursors (2), (3) and (4)

20/ degrees

Figure S2: (a) XRD patterns of films deposited from (**3**) at 470 °C and 395 °C with stick diagrams of diffraction patterns from bulk phases; (b) SEM image of Sn_2S_3 film and (c) SEM image of a film consisting of a mixture of Sn_2S_3 and SnS_2 , deposited from (**3**) at 470 °C and 395 °C, respectively.

Element	Weight%	Atomic%
	-	
S K	34.00	65.60
Sn L	66.00	34.40
Totals	100.00	

Electron Image 1

Figure S3 EDX analysis of SnS2 film deposited from (2) at 286 $^\circ\text{C}$

Element	Weight%	Atomic%
S K	20.83	49.35
Sn L	79.17	50.65
Totals	100.00	
10(01)	100.00	

Figure S4: EDX analysis of SnS film deposited from (2) at 558 °C

Element	Weight%	Atomic%
Se L	56.80	66.40
Sn L	43.20	33.60
Totals	100.00	

Electron Image 1

4µm

Figure S5: EDX analysis of $SnSe_2$ film deposited from (4) at 325 $^\circ\text{C}$

Figure S6: Room temperature ¹H NMR spectrum of [SnCl₄{ⁿBuS(CH₂)₃SⁿBu}] (CDCl₃, 25 °C).

Figure S7: Room temperature ¹³C{¹H} NMR spectrum of [SnCl₄{ⁿBuS(CH₂)₃SⁿBu}] (CDCl₃, 25 °C).

Figure S8: Room temperature ¹¹⁹Sn NMR spectrum of [SnCl₄{ⁿBuS(CH₂)₃SⁿBu}] (CH₂Cl₂, 25 °C).

Figure S9: Low temperature ^{119}Sn NMR spectrum of $[SnCl_4\{^nBuS(CH_2)_3S^nBu\}]$ (CH_2Cl_2, -90 °C).

Figure S10: IR spectrum of $[SnCl_4\{^nBuS(CH_2)_3S^nBu\}]$ as a Nujol mull between CsI plates

Figure S11: Room temperature ¹H NMR spectrum of [SnCl₄(SⁿBu₂)₂] (CDCl₃, 25 °C).

Figure S12: Showing the room temperature ${}^{13}C{}^{1}H$ NMR spectrum of $[SnCl_4(S^nBu_2)_2]$ (CDCl₃, 25 °C).

Figure S13: Showing the low temperature ¹¹⁹Sn NMR spectrum of [SnCl₄(SⁿBu₂)₂] (CH₂Cl₂, -50 °C).

Figure S14: Showing the IR spectrum of $[SnCl_4(S^nBu_2)_2]$ as a Nujol mull between CsI plates.

Figure S15: Room temperature ¹H NMR spectrum of $[SnCl_4(Se^nBu_2)_2]$. (CDCl₃, 25 °C).

Figure S16: Room temperature $^{13}C\{^{1}H\}$ NMR spectrum of $[SnCl_{4}(Se^{n}Bu_{2})_{2}]$ (CDCl₃, 25 °C).

Figure S17: Room temperature ¹¹⁹ Sn NMR spectrum of [SnCl₄(SeⁿBu₂)₂] (CH₂Cl₂, 25 °C).

Figure S18: Low temperature ¹¹⁹Sn NMR spectrum of [SnCl₄(SeⁿBu₂)₂] (CH₂Cl₂, -90 °C).

Figure S19: Low temperature $^{77}Se\{^{1}H\}$ NMR spectrum of $[SnCl_{4}(Se^{n}Bu_{2})_{2}]$ (CH₂Cl₂, -90 °C).

Figure S20: IR spectrum of [SnCl₄(SeⁿBu₂)₂] as a Nujol mull between CsI plates.