Supporting Information

Unexpected catalytic performance of Fe-M-C (M=N, P and S) electrocatalysts

towards oxygen reduction reaction: surface heteroatoms boost the activity of

Fe₂M/graphene nanocomposites

Yan-Ru Chen,^a Qin Wang *^a, Xue Bai,^a Zhen Yan,^a Yunkun Ning,^b Feng He,^c Zhijian Wu,^c and Jun Zhang *^a

^a College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R.

China

^b Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.

R.China

^c State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry,

Chinese Academy of Sciences, Changchun 130022, P. R. China

Figure S1. XRD patterns of Fe₃O₄/graphene catalysts prepared with various weight ratio.

Figure S2. Raman spectra of Fe_3O_4 (black), Fe_3O_4/GO (red), (c) $Fe_2P/NPFG$ (blue), and (d) Fe_2N/NSG (purple).

Figure S3. TEM, HR-TEM, and HAADF-STEM images of (a-h) N, S dual-doped graphene; (i-p) N, P, and F tri-doped graphene.

Figure S4. TEM, HR-TEM, and HAADF-STEM images of N, S co-doped Fe₂N catalysts.

Figure S5. TEM, HR-TEM, and HAADF-STEM images of N, P, F tri-doped Fe₂P.

Figure S6. TEM, HR-TEM images, and high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) images of (a-j) Fe₃O₄/NSG; (k-t) Fe₃(PO₄)₂(OH)₂/NPFG.

Figure S7. SEM images of (a) Fe_3O_4 , (b) Fe_3O_4/GO (20%), (c) Fe_2N/NSG , and (d) $Fe_2P/NPFG$ catalysts.

Figure S8. Experimental and fitted Fe 2p spectra of the fresh precursor and their corresponding calcined catalysts.

Figure S9. Experimental and fitted XPS spectra of the fresh precursor and their corresponding calcined catalysts: (a) C 1s; (b) Concentration and (c) Illustration of the N, P, F, and S heteroatoms; (d) Concentration of four types of nitrogen in these catalysts; and (e)

Illustration of the three types of nitrogen in graphene, (f) atomic percentages of the elements obtained in the XPS survey spectra.

Figure S11. ORR properties for the (a) N, S co-doped graphene, (b) N, P, F tri-doped graphene, (c) N, S dual-doped Fe₂N, and (d) N, P, F tri-doped Fe₂P.

Figure S12. XRD patterns of the (a) $Fe_2P/NPFG$ and (b) Fe_2N/NSG catalysts after cycling test.

Figure S13. XPS spectra of the initial Fe₂N/NSG and their corresponding catalysts after 1000 cycles: (a) Fe 2p, (b) N 1s, (c) S 2p, and (d) O 1s.

Figure S14. XPS spectra of the initial Fe₂P/NPFG and their corresponding catalysts after 1000 cycles: (a) Fe 2p, (b) P 2p, (c) N 1s, and (d) O 1s.

The XRD patterns of the Fe₂P/NPFG and Fe₂N/NSG catalysts indicated that there was no significant change in the crystalline structures of the samples after cycling test. And the peak intensity was decreased, probably due to the lower crystallinity degree after the electrochemical cycling test. The crystalline structure and composition of these catalysts remained almost identical after electrochemical reaction, demonstrating the high stability of Fe₂N/NSG and Fe₂P/NPFG as an ORR electrocatalyst.(Figure S12-Figure S14)

Table S1 Comparison of ORR catalytic performance for different catalysts reported in this work.

Catalyst	Onset potential (V vs. RHE)	Half-wave potential (V vs. RHE)	Limiting Current density (mA/cm ⁻²)	Electron transfer number (n)	Tafel slop (mV dec-1)
Fe ₂ N/NSG	0.97	0.82	5.21	3.9	80
Fe ₂ P/NPFG	0.97	0.83	5.02	3.9	76
Fe ₃ O ₄	0.74	0.59	0.43	0.4	87
GO	0.72	0.57	0.08	1.4	89
Fe ₃ O ₄ -GO	0.87	0.67	0.3	1.3	75
Pt-C (20wt%)	0.91	0.78	5.3	-	84

Table S2 Comparison of ORR electrocatalytic activity of Fe-based catalysts reported in this work and some other representative ORR eletrocatalysts that have been recently reported in alkaline medium.

Catalyst	Electrolyte	Onset potential (V vs. RHE)	Half-wave potential (V vs. RHE)	Limiting Current density (mA/cm ⁻²)	Electron transfer number (n)	Tafel slop (mV dec ⁻¹)	Reference
Fe ₂ N/NSG	0.1 M KOH	0.97	0.82	5.21	3.9	80	This work
Fe ₂ P/NPFG	0.1 M KOH	0.97	0.83	5.02	3.9	76	This work
Fe-P-C	0.1 M KOH	0.95	0.78	5.01	3.61		Soc. 2015, 137, 3165–3168
Meso-Fe-N-C/ N-G	0.1 M KOH	1.03	0.89	5.41	4	63	J. Mater. Chem. A. 2017, 5, 4868-4878
S-Fe/N/C	0.1M KOH	1.0	0.825	5.05	3.96		ACS Appl. Mater. Interfaces 2016, 8, 19379–19385
Fe,S/NGC-900	0.1 KOH	0.95	0.83	4.95	3.99	77	ACS Appl. Mater. Interfaces 2016, 8, 19533–19541
Fe-N-CC	0.1 KOH	0.94	0.83	5.0	3.7		ACS Nano 2016,10,5922 -5932
Fe-N/rGOsonic	0.1 KOH	0.906	0.737	3.4		86	J Solid State Electrochem, 2016, 20, 3507–3523
Fe/Fe ₃ C@N–C– NaCl	0.1 KOH	0.970	0.869		3.9		J. Mater. Chem. A, 2016, 4,7781–7787
CNT/PC	0.1 KOH	0.95	0.88	5.9	4		J. Am. Chem. Soc, 2016,138, 15046–15056
Fe ₂ N/N- graphitic carbon	0.1 M KOH	0.896	0.789	7.18	3.86	-	Nano energy, 2016, 24, 121-129
FeN ₂	0.1 M KOH	0.90	0.83	5.01	4.0		Nano energy, 2016, 24, 121-129

Table S3 The charge transfer of Fe, P, N, F, S and C atoms, ΔQ_{Fe} , ΔQ_P , ΔQ_N , ΔQ_F , ΔQ_S and ΔQ_C , respectively. Fe, P₁, N₁, F₁ and S₁ denote the atoms in the doped Fe₂P (111) or Fe₂N (111). C, P₂, N₂, F₂ and S₂ denote the atoms in the doped graphene. "-" and "+" indicate the loss and gain of charge, respectively.

	N, F doped I	$Fe_2P(111)$	S doped Fe ₂ N(111)		
	Without graphene	With graphene	Without graphene	With graphene	
ΔQ_{Fe}	-4.814	-5.648	-3.936	-4.021	
ΔQ_{P1}	+2.468	+2.584			
$\Delta Q_{\rm N1}$	+1.568	+1.320	+3.391	+3.015	
ΔQ_{F1}	+0.778	+0.675			
ΔQ_{S1}			+0.545	+0.723	
$\Delta Q_{\rm C}$		+0.448		-0.493	
ΔQ_{P2}		-1.303			
ΔQ_{N2}		+1.313		+1.156	
ΔQ_{F2}		+0.611			
ΔQ_{S2}				-0.380	

Reference

[1] Kresse G, Furthmüller J, Comp Mater Sci. 1996, 6, 15.

[2] Kresse G, Furthmüller J, Phys Rev B. 1996, 54, 11169.

[3] Perdew JP, Burke K, Ernzerhof M, Phys Rev Lett. 1996, 77, 3865.

[4] S. Grimme, J. Comput. Chem. 2006, 27, 1787.

[5] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 2010, 132, 154104.