Electronic supplementary data to accompany

Self-Assembly of heteroleptic dinuclear silver(I) complexes bridged by bis(diphenylphosphino)-acetylene

Sarah Keller,^{*a*} Timothy N. Camenzind,^{*a,b*} Johannes Abraham,^{*c*} Alessandro Prescimone,^{*a*} Daniel Häussinger,^{*c*} Edwin C. Constable^{*a*} and Catherine E. Housecroft^{**a*}

^aDepartment of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland; email: <u>catherine.housecroft@unibas.ch</u>

^bCurrent address: Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

^cDepartment of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland

Fig. S1: NOESY spectrum of $[Ag_2(dppa)_2(6,6'-Me_2bpy)_2][PF_6]_2$ in $(CD_3)_2CO$ at 298 K, 500 MHz. The NOESY cross peaks between the Me signal at δ 2.33 ppm and the H^{C2+C4} signal at δ 7.57 ppm are clearly visible.

Fig. S2: NOESY spectrum of $[Ag_2(dppa)_2(6,6'-Me_2bpy)_2][PF_6]_2$ in $(CD_3)_2CO$ at 208 K, 600 MHz. The NOESY cross peaks between the Me signal at δ 2.16 ppm and the H^{C2+C4} signal at δ 7.58 ppm are clearly visible.

8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8

Fig. S3: ¹H NMR spectra of $[Ag_2(dppa)_2(6,6'-Me_2bpy)_2][PF_6]_2$ in $(CD_3)_2CO$ at 298 K, 500 MHz (top) and 208 K, 600 MHz (bottom). Signals marked with an asterisk indicate residual CD_3CD_2HCO .

Fig. S4: NOESY spectrum of $[Ag_2(dppa)_2(tpy)_2][PF_6]_2$ in $(CD_3)_2CO$ at 298 K, 500 MHz. The NOESY cross peaks between the H^{A6} signal at δ 8.17 ppm and the H^{C2} signal at δ 7.48 ppm are sufficiently visible.

Fig. S5: NOESY spectrum of $[Ag_2(dppa)_2(tpy)_2][PF_6]_2$ in $(CD_3)_2CO$ at 208 K, 600 MHz. The NOESY cross peaks between the H^{A6} signal at δ 8.00 ppm and the H^{C2} signal at δ 7.49 ppm are sufficiently visible.

Fig. S6: ¹H NMR spectra of $[Ag_2(dppa)_2(tpy)_2][PF_6]_2$ in $(CD_3)_2CO$ at 298 K, 500 MHz (top) and 208 K, 600 MHz (bottom). Signals marked with an asterisk indicate residual CD_3CD_2HCO .

Fig. S7: ${}^{31}P{}^{1}H{}^{-109}Ag$ HSQC spectrum of $[Ag_2(dppa)_2(tpy)_2][PF_6]_2$ in $(CD_3)_2CO$ at 208 K, 14.1 T. Cross peaks without decoupling are coloured in red, with ${}^{31}P{}$ decoupling in blue, with ${}^{109}Ag{}$ decoupling in yellow and with both ${}^{31}P{}$ and ${}^{109}Ag{}$ decoupling green.

Fig. S8: NOESY spectrum of $[Ag_2(dppa)(6,6'-Me_2bpy)_2][PF_6]_2$ in $(CD_3)_2CO$ at 298 K, 500 MHz. The NOESY cross peaks between the Me signal at δ 2.66 ppm and the H^{C2} signal at δ 7.98 ppm are clearly visible.

Fig. S9: NOESY spectrum of $[Ag_2(dppa)(6,6'-Me_2bpy)_2][PF_6]_2$ in $(CD_3)_2CO$ at 208 K, 600 MHz. The NOESY cross peaks between the Me signal at δ 2.66 ppm and the H^{c2} signal at δ 8.06 ppm are clearly

visible. Also we see an exchange between the main Me signal at δ 2.66 ppm and the additional Me signal at δ 2.56 ppm.

Fig. S10: ¹H NMR spectra of $[Ag_2(dppa)(6,6'-Me_2bpy)_2][PF_6]_2$ in $(CD_3)_2CO$ at 298 K, 500 MHz (top) and 208 K, 600 MHz (bottom). Signals marked with an asterisk indicate residual CD_3CD_2HCO .

Fig. S11: NOESY spectrum of a 2:2:1 mixture of [Ag][PF₆], tpy and dppa in (CD₃)₂CO at 298 K, 500 MHz. The NOESY cross peaks between the H^{A6} signal at δ 8.36 ppm and the H^{C2} signal at δ 7.65 ppm are clearly visible.

Fig. S12: NOESY spectrum of a 2:2:1 mixture of [Ag][PF₆], tpy and dppa in (CD₃)₂CO at 208 K, 600 MHz.

Fig. S13: ¹H NMR spectra of a 2:2:1 mixture of $[Ag][PF_6]$, tpy and dppa in $(CD_3)_2CO$ at 298 K, 500 MHz (top) and 208 K, 600 MHz (bottom). Signals marked with an asterisk indicate residual CD_3CD_2HCO .

Fig. S14: ³¹P{¹H}-¹⁰⁹Ag HSQC spectrum of a 2:2:1 mixture of Ag[PF₆], tpy and dppa in $(CD_3)_2CO$ at 208 K, 14.1 T. Cross peaks with {³¹P} decoupling are coloured in blue and with {¹⁰⁹Ag} decoupling in yellow. The spectra without decoupling and with both {³¹P} and {¹⁰⁹Ag} decoupling are not shown due to weak signal to noise ratio.