New hydrogen-rich ammonium metal borohydrides, $NH_4[M(BH_4)_4]$, M = Y, Sc, Al, as potential H_2 sources

A. Starobrat,^{a,b}T. Jaroń^{b*} and W.Grochala^b

^a College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences (MISMaP), University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland

^b Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.

Contents

- 1. Figure S1. TGA/DSC plots of NH₄[Y(BH₄)₄] (1) with quantitative details on mass drop events.
- 2. Figure S2. Mass spectra of gaseous decomposition products of compound 1.
- 3. Figure S3. TGA/DSC plots of $NH_4[Sc(BH_4)_4]$ (2) with quantitative details on mass drop events.
- 4. Figure S4. Mass spectra of gaseous decomposition products of compound **2**.
- 5. Figure S5. TGA/DSC plots of $NH_4[Al(BH_4)_4]$ (3) with quantitative details on mass drop events.
- 6. Figure S6. Mass spectra of gaseous decomposition products of compound **3**.
- 7. Figure S7. Rietveld plot of compound **1** at 233 K.
- 8. Figure S8. Rietveld plot of compound **2** at 240 K with β -Li[Sc(BH₄)₄] phase.
- 9. Figure S9. Rietveld plot of compound **2** at 240 K without β -Li[Sc(BH₄)₄]phase.
- 10. Figure S10. Rietveld plot of compound **3** at 240 K.
- 11. Figure S11. Anions-cations coordination polyhedra in compounds 1 and 2.
- 12. Figure S12. Anions-cations coordination polyhedra in compound 3.
- 13. Figure S13. FTIR spectra of compound **1** heated up to different temperatures.
- 14. Figure S14. FTIR spectra of compound **2** heated up to different temperatures.
- 15. Figure S15. Rietveld plot of compound **1** at RT.
- 16. Figure S16. XRD patterns of compound **1** at different temperatures.
- 17. Figure S17. XRD patterns of compound **2** at different temperatures.
- 18. Figure S18. Crystal cell of Y/N sublattice in compound 1.
- 19. Figure S19. Rietveld plot of β -Li[Sc(BH₄)₄].
- 20. Figure S20. Li coordination in β -Li[Sc(BH₄)₄].
- 21. Table S1. Elemental combustion analysis results of compounds **1**, **2** and **3** with comparison to possible reaction routes.
- 22. Figure S21. XRD pattern of the product of RT decomposition of the compound **3**.

Figure S1. TGA/DSC plots of $NH_4[Y(BH_4)_4]$ (1) with quantitative details on mass drop events.

Figure S2. Mass spectra of gaseous decomposition products of compound **1**. Time range shown in the figure corresponds to temperature range -20–300 °C, heating rate 2 °C/min. Maxima of two main events can be observed at times corresponding to 50 °C and 120 °C.

Figure S3. TGA/DSC plots of $NH_4[Sc(BH_4)_4]$ (2) with quantitative details on mass drop events.

Figure S4. Mass spectra of gaseous decomposition products of compound **2**. Time range shown in the figure corresponds to temperature range -20-300 °C, heating rate 2 °C/min. Two main events can be observed at the time corresponding to the ranges of 40-65 °C and 95-125 °C.

Figure S5. TGA/DSC plots of $NH_4[Al(BH_4)_4]$ (3) with quantitative details on mass drop events.

Figure S6. Mass spectra of gaseous decomposition products of compound **3**. Time range shown in the figure corresponds to temperature range -20–300 °C, heating rate 2 °C/min. Maxima of two main events can be observed at the time corresponding to 38 °C and 87 °C.

Figure S7. Rietveld plot of $NH_4[Y(BH_4)_4]$ at 233 K. Phase#1 - $NH_4[Y(BH_4)_4]$, Phase#2 - LiCl, Phase#3 - α -Y(BH₄)₃.

Figure S8. Rietveld plot of NH₄[Sc(BH₄)₄] at 240 K. Phase#1 - NH₄[Sc(BH₄)₄], Phase#2 - LiCl, Phase#3 - β-Li[Sc(BH₄)₄].

Figure S9. Rietveld plot of $NH_4[Sc(BH_4)_4]$ at 240 K. Phase#1 - $NH_4[Sc(BH_4)_4]$, Phase#2 - LiCl. This data is lower quality than the one from Figure S8, but shows sample without β -Li[Sc(BH_4)_4].

Figure S10. Rietveld plot of NH₄[Al(BH₄)₄] at 240 K. Phase#1 - NH₄[Al(BH₄)₄], Phase#2 - LiCl.

Figure S11. Anions-cations coordination polyhedra in compounds **1** and **2**. Since N atoms (gray) and Sc/Y atoms (purple) are central atoms of NH_4^+ cations and $[M(BH_4)_4]^-$ anions, respectively, H and B atoms are not shown in the picture for clarity.

Figure S12. Anions-cations coordination polyhedra in compound **3**. Since N atoms (gray) and Al atoms (violet) are central atoms of NH_4^+ cations and $[Al(BH_4)_4]^-$ anions, respectively, H and B atoms are not shown in the picture for clarity.

Figure S13. FTIR spectra of compound **1** heated up to different temperatures: 240 K, RT, 160 °C, 210 °C and 300 °C, starting from top.

Figure S14. FTIR spectra of compound **2** heated up to different temperatures: 240 K, RT, 80 °C, 120 °C, 140 °C and 300 °C, starting from top.

Figure S15. Rietveld plot of compound **1** at RT. Phases, starting from bottom, α -Y(BH₄)₃, LiCl and β -Y(BH₄)₃.

Figure S16. XRD patterns of compound **1** at different temperatures. Samples composition: 240 K - NH₄[Y(BH₄)₄] and LiCl; RT - α -Y(BH₄)₃, β -Y(BH₄)₃ and LiCl; 160 °C - α -Y(BH₄)₃, β -Y(BH₄)₃ and LiCl; 210 °C - β -Y(BH₄)₃ and LiCl; 300 °C - LiCl.

Figure S17. XRD patterns of compound **2** at different temperatures. Samples composition: 240 K - NH₄[Sc(BH₄)₄] and LiCl; RT - β -Li[Sc(BH₄)₄] and LiCl; 80 °C - β -Li[Sc(BH₄)₄] and LiCl; 120 °C - β -Li[Sc(BH₄)₄], α -Li[Sc(BH₄)₄] and LiCl; 140 °C - α -Li[Sc(BH₄)₄] and LiCl; 300 °C - LiCl.

Figure S18. Crystal cell of Y/N (green and gray, respectively) sublattice in $NH_4[Y(BH_4)_4]$ (1): orthorhombic *P*nma, a = 12.202 Å, b = 8.076 Å, c = 10.378 Å.

Figure S19. Rietveld plot of β -Li[Sc(BH₄)₄] at RT. Phases, from bottom to top, β -Li[Sc(BH₄)₄], LiCl, α -Li[Sc(BH₄)₄].

Figure S20. Li@H coordination in β -Li[Sc(BH₄)₄].

Table S1. Elemental combustion analysis results of compounds 1, 2 and 3 at RT (shaded rows) with compariso	on to
$NH_4[M(BH_4)_4]$ wt% composition and solid products of possible decomposition reaction routes.	

Compound	Cl content	N content	H content
	[Wt%]		[Wt%]
$NH_4[Y(BH_4)_4]$ (1) + 4 LiCl	42.22	4.17	6.00
1 at RT + 4 LiCl	40.40-40.64	3.69-3.76	3.18-3.25
After reaction route:	43.26	4 27	2.60
$NH_4[Y(BH_4)_4] + 4 \text{ LiCl} \rightarrow Y(BH_4)_3 + 4 H_2 + a-BN + 4 \text{ LiCl}$		43.26 4.27	3.69
$NH_4[Sc(BH_4)_4] + 4 LiCl$	48.56	4.80	6.91
2 at RT + 4 LiCl	49.33-49.58	4.84-4.94	4.40-4.58
$NH_4[Sc(BH_4)_4] + 4 LiCl \longrightarrow Sc(BH_4)_3 + 4 H_2 + a\text{-}BN + 4 LiCl$	49.96	4.93	4.26
NH ₄ [Al(BH ₄) ₄] (3) + 4 LiCl	51.76	5.11	7.36
3 at RT + 4 LiCl	54.23	5.01-5.06	3.88-3.94
After reaction route:	53.33	53.33 5.27	4.55
$NH_4[AI(BH_4)_4] + 4 LiCI \longrightarrow 4 H_2 + \{AI(BH_4)_3 x BN\} + 4 LiCI$			
After reaction route:			
$NH_4[AI(BH_4)_4] + 4 LiCI \rightarrow \{HAI(BH_4)_2 \times NH_2BH_2\} + \frac{1}{2} B_2H_6 +$	55.37	5.47	5.12
2H ₂ + 4 LiCl			
After reaction route:			
$ NH_4[AI(BH_4)_4] + 4 LiCI \longrightarrow \{H_2AIBH_4 \times NH_2BH_2\} + B_2H_6 + H_2 + H_4H_4 + H_4H_4 + H_4H_4 + H_4H_4 + H_4H_4 + H_4H_4 + H_4 + H_4$	58.78	5.81	5.01
4 LiCl			

Figure S21. XRD pattern of the product of RT decomposition of the compound **3** (the low-angle part). The background has been removed for clarity. The diffraction peaks can be indexed in two monoclinic unit cells: $P2_1/c$ -type, a = 8.7840 Å, b = 13.3137 Å, c = 16.2906 Å, beta = 119.9005°; $P2_1/n$ -type, a = 14.1477 Å, b = 13.3227 Å, c = 8.7911 Å, beta = 92.7022°.