Supporting Information

Homo- and copolymerization of norbornene with tridentate nickel complexes bearing *o*-aryloxide-N-heterocyclic carbene ligands

Dandan Yang,[†] Jie Dong,[†] and Baiquan Wang^{*,†,‡,§}

[†]State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry,

[‡]Collaborative Innovation Center of Chemical Science and Engineering, Nankai

University, Tianjin 300071, People's Republic of China

[§]State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China

^{*}To whom correspondence should be addressed.

Tel and fax: +86-22-23504781. E-mail: bqwang@nankai.edu.cn.

Figures S1–2. ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of L1. Figures S3–4. ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of L2. Figures S5–6. ¹H NMR (400 MHz, DMSO) and ¹³C NMR (100 MHz, DMSO) spectra of L3. Figures S7–8. ¹H NMR (400 MHz, DMSO) and ¹³C NMR (100 MHz, DMSO) spectra of Ni1.

Figures S9–10. ¹H NMR (400 MHz, CD_3CN) and ¹³C NMR (100 MHz, CD_3CN) spectra of Ni2.

Figures S11–12. ¹H NMR (400 MHz, DMSO) and ¹³C NMR (100 MHz, DMSO) spectra of Ni3.

Figures S13–14. ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of **Ni4**.

Figure S15. ¹H NMR spectra of poly(NB-co-1-octene)s: (a) 12%, (b) 15%, (c) 17%, (d) 9%,

(e) 12% of 1-octene molar ratio obtained by Ni1–Ni3/B(C_6F_5)₃ systems.

Figure S16. ¹³C NMR spectra of poly(NB-co-1-octene)s: (a) 12%, (b) 15%, (c) 17%, (d) 9%,

(e) 12% of 1-octene molar ratio obtained by Ni1–Ni3/B(C_6F_5)₃ systems.

Figures S17–27. GPC curve of poly(NBE) of the polymer obtained by Table 1.

Figures S28–38. GPC curve of poly(NBE) of the polymer obtained by Table 2.

Figures S39–43. GPC curve of poly(NB-co-1-octene)s of the polymer obtained by Table 3.

Figures S44–49. GPC curve of poly(NBE) of the polymer obtained by Table 4.

Figure S50. IR spectrum of PNB activated by Et₂AlCl (Table 1 entry 6).

Figure S51. IR spectrum of PNB activated by Me₂AlCl (Table 1 entry 11).

Figure S52. IR spectrum of PNB activated by $B(C_6F_5)_3$ (Table 2 entry 11).

Figures S53–55. IR spectra of poly(NB-co-1-octene)s (Table 3).

Figure S56. DSC thermograms of PNB obtained by $Ni1/B(C_6F_5)_3$ system (Table 2 entry 11).

Figures S57–59. DSC thermograms of poly(NB-co-1-octene)s obtained by Ni1–Ni3/B(C_6F_5)₃ system.

Figure S60. TGA of PNB.

Figure S61. TGA of poly(NB-co-1-octene)s.

Figures S62–63. ¹H NMR and ¹F NMR spectra of a mixture of nickel complex Ni1 with 1 equiv $B(C_6F_5)_3$ reacted at 80 °C for 20 min.

Figures S64–65. ¹H NMR and ¹F NMR spectra of a mixture of nickel complex **Ni1** with 5 equiv $B(C_6F_5)_3$ reacted at 80 °C for 20 min.

Figures S66–67. ¹H NMR and ¹F NMR spectra of a mixture of nickel complex Ni1 with 5

equiv $B(C_6F_5)_3$ reacted at room temperature for 20 min.

Figure S68. ¹⁹F NMR spectra of poly(NB-co-1-octene)s obtained by $Ni1/B(C_6F_5)_3$ system (Table 3 entry 4).

 Table S1. Catalytic optimization with Ni1–Ni4/Me₂AlCl.

Table S2. Time dependence studies at high temperature with $Ni1-Ni3/B(C_6F_5)_3$.

Figure S1. ¹H NMR (400 MHz, CDCl₃) spectrum of **L1**.

Figure S2. ¹³C NMR (100 MHz, CDCl₃) spectrum of L1.

Figure S3. ¹H NMR (400 MHz, CDCl₃) spectrum of L2.

Figure S4. ¹³C NMR (100 MHz, CDCl₃) spectrum of L2.

Figure S6. ¹³C NMR (100 MHz, DMSO) spectrum of L3.

Figure S7. ¹H NMR (400 MHz, DMSO) spectrum of Ni1.

Figure S8. ¹³C NMR (100 MHz, DMSO) spectrum of Ni1.

Figure S11. ¹H NMR (400 MHz, DMSO) spectrum of Ni3.

Figure S12. ¹³C NMR (100 MHz, DMSO) spectrum of Ni3.

Figure S13. ¹H NMR (400 MHz, CDCl₃) spectrum of Ni4.

Figure S14. ¹³C NMR (100 MHz, CDCl₃) spectrum of Ni4.

Figure S15. ¹H NMR spectra of poly(NB-co-1-octene)s: (a) 12% (Table 3 entry 3), (b) 15% (Table 3 entry 4), (c) 17% (Table 3 entry 8), (d) 9% (Table 3 entry 10), (e) 12% (Table 3 entry 11) of 1-octene molar ratio obtained by **Ni1–Ni3**/B(C_6F_5)₃ systems.

Figure S16. ¹³C NMR spectra of poly(NB-co-1-octene)s: (a) 12% (Table 3 entry 3), (b) 15% (Table 3 entry 4), (c) 17% (Table 3 entry 8), (d) 9% (Table 3 entry 10), (e) 12% (Table 3 entry 11) of 1-octene molar ratio obtained by **Ni1–Ni3**/B(C_6F_5)₃ systems.

Figure S17. GPC curve of poly(NBE) of the polymer obtained by Table 1 entry 1.

Figure S18. GPC curve of poly(NBE) of the polymer obtained by Table 1 entry 2.

Figure S19. GPC curve of poly(NBE) of the polymer obtained by Table 1 entry 3.

Broad Unknown Relative Chromatogram

Figure S20. GPC curve of poly(NBE) of the polymer obtained by Table 1 entry 6.

111345

1.607938

1.449136

1.934220

83421

35801

57566

65173

Figure S21. GPC curve of poly(NBE) of the polymer obtained by Table 1 entry 7.

Broad Unknown Relative Chromatogram

	Broad Unknown Relative Peak Table												
	Distribution Name	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw	Mz+1/Mw				
1		30180	51885	62554	77148	103989	1.719216	1.486899	2.004207				

Figure S22. GPC curve of poly(NBE) of the polymer obtained by Table 1 entry 8.

Figure S23. GPC curve of poly(NBE) of the polymer obtained by Table 1 entry 9.

Broad Unknown Relative Chromatogram

Figure S24. GPC curve of poly(NBE) of the polymer obtained by Table 1 entry 11.

Figure S25. GPC curve of poly(NBE) of the polymer obtained by Table 1 entry 12.

Broad Unknown Relative Chromatogram

Figure S26. GPC curve of poly(NBE) of the polymer obtained by Table 1 entry 13.

Broad Unknown Relative Chromatogram

Figure S27. GPC curve of poly(NBE) of the polymer obtained by Table 1 entry 14.

Figure S28. GPC curve of poly(NBE) of the polymer obtained by Table 2 entry 1.

Figure S29. GPC curve of poly(NBE) of the polymer obtained by Table 2 entry 2.

Broad Unknown Relative Chromatogram

Figure S30. GPC curve of poly(NBE) of the polymer obtained by Table 2 entry 3.

417715

1.590549

1.316074

1.532927

358624

171322

272495

365775

	Broad Unknow'n Relative Peak Table												
	Distribution Name	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw	Mz+1/Mw				
1		144921	247498	326254	339358	403810	1.707811	1.371155	1.631567				

Figure S31. GPC curve of poly(NBE) of the polymer obtained by Table 2 entry 4.

	Broad Unknown Relative Peak Table												
	Distribution Name	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw	Mz+1/Mw				
1		106895	219407	250603	319053	389787	2.052537	1.454163	1.776552				

Figure S32. GPC curve of poly(NBE) of the polymer obtained by Table 2 entry 5.

Broad Unknown Relative Chromatogram

Figure S33. GPC curve of poly(NBE) of the polymer obtained by Table 2 entry 6.

396925

169836

308781

547845

Broad Unknown Relative Chromatogram

449297

1.818112

1.285456

1.455065

	Broad Unknown Relative Peak Table												
	Distribution Name	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw	Mz+1/Mw				
1		123025	250186	314758	349427	413712	2.033616	1.396669	1.653616				

Figure S34. GPC curve of poly(NBE) of the polymer obtained by Table 2 entry 7.

	× /	× /	(200.00)	(2010)	(Dattonio)			
1	177871	330882	598777	419548	467443	1.860238	1.267969	1.412720

Figure S35. GPC curve of poly(NBE) of the polymer obtained by Table 2 entry 11.

Figure S36. GPC curve of poly(NBE) of the polymer obtained by Table 2 entry 12.

Figure S37. GPC curve of poly(NBE) of the polymer obtained by Table 2 entry 14.

Broad Unknown Relative Chromatogram

Figure S38. GPC curve of poly(NBE) of the polymer obtained by Table 2 entry 16.

Figure S39. GPC curve of poly(NB-co-1-octene)s of the polymer obtained by Table 3 entry 3.

Figure S40. GPC curve of poly(NB-co-1-octene)s of the polymer obtained by Table 3 entry 4.

Figure S41. GPC curve of poly(NB-co-1-octene)s of the polymer obtained by Table 3 entry 8.

Figure S42. GPC curve of poly(NB-co-1-octene)s of the polymer obtained by Table 3 entry 10.

Figure S43. GPC curve of poly(NB-co-1-octene)s of the polymer obtained by Table 3 entry 11.

Figure S44. GPC curve of poly(NBE) of the polymer obtained by Table 4 entry 1.

Figure S45. GPC curve of poly(NBE) of the polymer obtained by Table 4 entry 5.

Broad Unknown Relative Chromatogram

Figure S46. GPC curve of poly(NBE) of the polymer obtained by Table 4 entry 6.

Figure S47. GPC curve of poly(NBE) of the polymer obtained by Table 4 entry 8.

	Bload Olknown Relative Feak Table												
	Distribution Name	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Mz (Daltons)	Mz+1 (Daltons)	Polydispersity	Mz/Mw	Mz+1/Mw				
1		61685	134564	137771	228651	313040	2.181469	1.699200	2.326330				

Figure S48. GPC curve of poly(NBE) of the polymer obtained by Table 4 entry 10.

Figure S49. GPC curve of poly(NBE) of the polymer obtained by Table 4 entry 11.

Figure S50. IR spectrum of PNB activated by Et₂AlCl (Table 1 entry 6).

Figure S51. IR spectrum of PNB activated by Me₂AlCl (Table 1 entry 11).

Figure S52. IR spectrum of PNB activated by $B(C_6F_5)_3$ (Table 2 entry 11).

Figure S53. IR spectrum of poly(NB-co-1-octene)s (Table 3 entry 3).

Figure S54. IR spectrum of poly(NB-co-1-octene)s (Table 3 entry 7).

Figure S55. IR spectrum of poly(NB-co-1-octene)s (Table 3 entry 11).

Figure S56. DSC thermograms of PNB obtained by Ni1/B(C₆F₅)₃ system (Table 2 entry 11).

Figure S57. DSC thermograms of poly(NB-co-1-octene)s obtained by $Ni1/B(C_6F_5)_3$ system (Table 3 entry 3).

Figure S58. DSC thermograms of poly(NB-co-1-octene)s obtained by $Ni2/B(C_6F_5)_3$ system (Table 3 entry 7).

Figure S59. DSC thermograms of poly(NB-co-1-octene)s obtained by $Ni3/B(C_6F_5)_3$ system (Table 3 entry 11).

Figure S60. TGA of PNB.

Figure S61. TGA of poly(NB-co-1-octene)s.

Figure S62. ¹H NMR spectra of a mixture of nickel complex Ni1 with 1 equiv $B(C_6F_5)_3$ reacted at 80 °C for 20 min.

Figure S63. ¹⁹F NMR spectrum a mixture of nickel complex Ni1 with 1 equiv $B(C_6F_5)_3$ reacted at 80 °C for 20 min.

Figure S64. ¹H NMR spectra of a mixture of nickel complex Ni1 with 5 equiv $B(C_6F_5)_3$ reacted at 80 °C for 20 min. and heated (a) at 60 oC room temperature for 5 min (b).

Figure S65. ¹⁹F NMR spectra of a mixture of nickel complex Ni1 with 5 equiv $B(C_6F_5)_3$ reacted at 80 °C for 20 min.

Figure S66. ¹H NMR spectra of a mixture of nickel complex Ni1 with 5 equiv $B(C_6F_5)_3$ reacted at room temperature for 20 min.

Figure S67. ¹⁹F NMR spectra of a mixture of nickel complex Ni1 with 5 equiv $B(C_6F_5)_3$ reacted at room temperature for 20 min.

Figure S68. ¹⁹F NMR spectra of poly(NB-co-1-octene)s obtained by $Ni1/B(C_6F_5)_3$ system (Table 3 entry 4).

	• -							
entry	cotalalyst	Cat.	Т	t	(Al/Ni)	PNB(g)	conv.(%)	activity ^b
			(°C)					
1	Me ₂ AlCl	Ni1	0	12 h	200	0.3006	32.0	5.01
2	Me ₂ AlCl	Ni1	20	12 h	200	0.3221	34.3	5.37
3	Me ₂ AlCl	Ni1	40	12 h	200	0.3285	34.9	5.48
4	Me ₂ AlCl	Ni1	60	12 h	200	0.2396	25.5	3.99
5	Me ₂ AlCl	Ni1	20	12 h	50	0.2293	24.4	3.82
6	Me ₂ AlCl	Ni1	20	12 h	100	0.3190	33.9	5.32
7	Me ₂ AlCl	Ni1	20	12 h	500	0.2985	31.8	4.98
8	Me ₂ AlCl	Ni1	20	12 h	1000	0.2490	26.5	4.15
9	Me ₂ AlCl	Ni2	20	12 h	100	0.3694	39.3	6.16
10	Me ₂ AlCl	Ni3	20	12 h	100	0.3513	37.4	5.86
11	Me ₂ AlCl	Ni4	20	12 h	100	0.2282	24.3	3.80

Table S1. Catalytic optimization with Ni1–Ni4/Me₂AlCl^a

^{*a*}Polymerization conditions: solvent, toluene; V_{total} , 10 mL; n[Ni] = 5.0 µmol; norbornene, 1.0 g; Me₂AlCl, 0.9 M in heptane. ^{*b*}In units of 10³ g of PNB (mol of Ni)⁻¹h⁻¹.

	-			-	-			
entry	cotalalyst	Cat.	Т	t	(B/Ni)	PNB(g)	conv.(%)	activity ^b
			$(^{\circ}C)$	(min)				
1	$B(C_{6}F_{5})_{3}$	Ni1	100	10	100	0.1137	11.4	0.273
2	$B(C_6F_5)_3$	Ni1	100	20	100	0.1250	12.5	0.150
3	$B(C_{6}F_{5})_{3}$	Ni1	100	30	100	0.3483	34.8	0.279
4	$B(C_{6}F_{5})_{3}$	Ni1	100	40	100	0.6138	61.4	0.368
5	$B(C_{6}F_{5})_{3}$	Ni2	100	10	100	0.8021	80.2	1.925
6	$B(C_{6}F_{5})_{3}$	Ni2	100	20	100	0.8583	85.8	1.030
7	$B(C_{6}F_{5})_{3}$	Ni2	100	30	100	0.9004	90.0	0.720
8	$B(C_{6}F_{5})_{3}$	Ni2	100	40	100	0.9108	91.1	0.546
9	$B(C_{6}F_{5})_{3}$	Ni3	100	10	100	0.1960	19.6	0.470
10	$B(C_{6}F_{5})_{3}$	Ni3	100	20	100	0.3166	31.7	0.380
11	$B(C_{6}F_{5})_{3}$	Ni3	100	30	100	0.4163	41.6	0.333
12	$B(C_{6}F_{5})_{3}$	Ni3	100	40	100	0.4530	45.3	0.272

Table S2. Time dependence studies at high temperature with $Ni1-Ni3/B(C_6F_5)_3$.

^{*a*}Polymerization conditions: solvent, toluene; V_{total} , 40 mL; n[Ni] = 2.5 µmol; norbornene, 1.0 g; ^{*b*}In units of 10⁶ g of PNB (mol of Ni)⁻¹ h⁻¹.