Light-Initiated Reversible Conversion of Macrocyclic Endoperoxides Derived from Half-Sandwich Rhodium-Based Metallarectangles

Wei-Long Shan, Wen-Xi Gao, Yue-Jian Lin and Guo-Xin Jin*

[^0]1. Synthesis of binuclear complex S2
2. Crystal Structure S2
3. NMR Spectra S4
4. UV-vis spectroscopy S18
5. X-ray crystallography details S21

1. Synthesis of binuclear complex

$\mathrm{A} \mathrm{Ag}(\mathrm{OTf})(51.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}{ }^{1}(31.0 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$ at room temperature. The mixture was sheltered from light and stirred for 3 h , followed by filtration to remove AgCl , and at which point the BP4VA ligand ($19.3 \mathrm{mg}, 0.05 \mathrm{mmol}$) was added to the filtrate. The mixture was then stirred at room temperature for 12 h . The solvent was then concentrated to about 3 mL . Upon the addition of diethyl ether, a red solid of the binuclear complex precipitated and was collected and dried under vacuum after washing with diethyl ether. Yield: $60 \mathrm{mg}, 82 \%$. Data for binuclear complex: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{ppm}$): $\delta=1.70(\mathrm{~s}, 30 \mathrm{H}, \mathrm{Cp} *-\mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-), 7.61(\mathrm{dd}, \mathrm{J}=6.8,3.6 \mathrm{~Hz}, 4 \mathrm{H}$, anthracene-H), $8.00(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 4 \mathrm{H}$, pyridyl-H), $8.41(\mathrm{dd}, \mathrm{J}=6.8,3.2 \mathrm{~Hz}, 4 \mathrm{H}$, anthracene -H$)$, $8.57(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-), 8.63\left(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 4 \mathrm{H}\right.$, pyridyl-H). $\mathrm{IR}\left(\mathrm{KBr}\right.$ disk, $\left.\mathrm{cm}^{-1}\right): v=$ 3473 (s), 2320 (w), 1610 (m), 1458 (w), 1429 (w), 1381 (w), 1279 (s), 1258 (s), 1225 (w), 1162 (m), 1066 (w), 1031 (s), 845 (w), 762 (w), 639 (m), 577 (w), 518 (w), 449 (w).

References

1 C. White, A. Yates and P. M. Maitlis, Inorg. Synth., 1992, 29, 228.

2. Crystal Structure

a)

b)

Figure S1. (a) The intramolecular $\pi \ldots \pi$ interaction in 5; (b) The intramolecular $\pi \ldots \pi$ interaction in 6. All hydrogen atoms, solvent molecules, and counterions are omitted for clarity. Color code: N, blue; O, red; C, gray; Rh, purple.

b)

Figure S2. (a) Stacking of the molecules in crystals of 5 viewed along the y axis; (b) Stacking of the molecules in crystals of $\mathbf{6}$ viewed along the y axis. All hydrogen atoms, solvent molecules, and counterions are omitted for clarity. Color code: N, blue; O, red; C, gray; Rh, purple.

Figure S3. (a) Stacking of the molecules in crystals of $\mathbf{5 - \mathbf { O } _ { \mathbf { 2 } }}$ viewed along the y axis; (b) Stacking of the molecules in crystals of $\mathbf{6}-\mathbf{O}_{\mathbf{2}}$ viewed along the y axis. All hydrogen atoms, solvent molecules, and counterions are omitted for clarity. Color code: N, blue; O, red; C, gray; Rh, purple.

3. NMR Spectra

Figure S4. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for the binuclear complex.

Figure S5. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for complex 4.

Figure S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for complex 4.

Figure S7. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for complex 4.

Figure S8．${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{ppm}$ ）of complex 5 ．

Figure S9．${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$ ，ppm）for complex 5.

Figure S10. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{ppm}$) for complex 5.

Figure S11. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for complex 6 .

Figure S12. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for complex 6 .

Figure S13. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for complex 6 .

Figure S14. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for complex $\mathbf{4 - \mathbf { O } _ { 2 }}$.

Figure S15. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for complex 4- \mathbf{O}_{2}.

Figure S16. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for complex $\mathbf{4 - \mathbf { O } _ { \mathbf { 2 } }}$.

Figure S17. ${ }^{1} \mathrm{H}$ DOSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for 4-O2.

Figure S18. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for complex $\mathbf{5 - \mathbf { O } _ { \mathbf { 2 } }}$.

Figure S19. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for complex $\mathbf{5 - \mathbf { O } _ { \mathbf { 2 } }}$.

Figure S20. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for complex $\mathbf{5 - \mathbf { O } _ { \mathbf { 2 } }}$.

Figure S21. ${ }^{1} \mathrm{H}$ DOSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{ppm}$) for complex $\mathbf{5 - \mathbf { O } _ { \mathbf { 2 } }}$.

Figure S22. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for complex 6-O $\mathbf{O}_{\mathbf{2}}$.

Figure S23. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for complex $\mathbf{6}-\mathbf{O}_{\mathbf{2}}$.

Figure S24. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ppm) for complex $\mathbf{6 - \mathbf { O } _ { \mathbf { 2 } }}$.

Figure S25. ${ }^{1} \mathrm{H}$ DOSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{ppm}$) for $\mathbf{6 - \mathbf { O } _ { \mathbf { 2 } }}$.

Figure S26. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$ spectra of the $\mathrm{Cp} *$ signals of 4; after irradiation at $\lambda=365 \mathrm{~nm}$ under air (free, $1 \mathrm{~h}, 2 \mathrm{~h}, 3 \mathrm{~h}$, and 4 h).

Figure S27. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right)$ spectra of a 1 mM solution of BP4VA ligand; after irradiation at $\lambda=365 \mathrm{~nm}(2 \mathrm{~h})$ under air.

Figure S28. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$ spectra of a 1 mM solution of 5; after irradiation at $\lambda=365 \mathrm{~nm}(4 \mathrm{~h})$ and irradiation at $\lambda=254 \mathrm{~nm}(8 \mathrm{~h})$ under air.

Figure S29. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$ spectra of a 1 M solution of 5; after irradiation at $\lambda=365 \mathrm{~nm}$ under air (free, $1 \mathrm{~h}, 2 \mathrm{~h}, 3 \mathrm{~h}$, and 4 h).

Figure S30. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$ spectra of a 1 mM solution of $\mathbf{6}$; after irradiation at $\lambda=365 \mathrm{~nm}(5 \mathrm{~h})$ and irradiation at $\lambda=254 \mathrm{~nm}(8 \mathrm{~h})$ under air.

Figure S31. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right)$ spectra of a 1 M solution of $\mathbf{6}$; after irradiation at $\lambda=365 \mathrm{~nm}$ under air (free, $1 \mathrm{~h}, 2 \mathrm{~h}, 3 \mathrm{~h}, 4 \mathrm{~h}$, and 5 h).

4. UV-vis spectroscopy

Figure S32. UV/vis spectra of a $1 \times 10^{-5} \mathrm{M}$ solution of $\mathbf{5}$ and $\mathbf{5 - \mathbf { O } _ { \mathbf { 2 } }}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

Figure S33. UV/vis spectra of a $1 \times 10^{-5} \mathrm{M}$ solution of 6 and $\mathbf{6}-\mathbf{O}_{\mathbf{2}}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

Figure S34. UV/vis spectra of a $1 \times 10^{-5} \mathrm{M}$ solution of $\mathbf{4}$ in $\mathrm{CH}_{3} \mathrm{CN}$ was irradiated at $\lambda=254 \mathrm{~nm}$.

Figure S34. UV/vis spectra of a $1 \times 10^{-5} \mathrm{M}$ solution of 5 in $\mathrm{CH}_{3} \mathrm{CN}$ was irradiated at $\lambda=254 \mathrm{~nm}$.

Figure S35. UV/vis spectra of a $1 \times 10^{-5} \mathrm{M}$ solution of 6 in $\mathrm{CH}_{3} \mathrm{CN}$ was irradiated at $\lambda=254 \mathrm{~nm}$.

5. X-ray crystallography details.

In asymmetric unit of $\mathbf{4}$, there were disordered anion and solvents (one triflate anion, three methanol and one water molecules) which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit them. One bipyridine ligand and one triflate anion were disordered and they were divided into two parts (53:47 for bipyridine ligand and 60:40 for anion). 47 ISOR, 1 SIMU and 42 DFIX instructions were used to restrain anions, ligands and Cp* fragments so that there were 342 restraints in the data. Hydrogen of methanol molecule could not be found and others were put in calculated positions.

In asymmetric unit of 5, there were disordered solvents (five acetonitrile molecules) which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit them. 32 ISOR and 18 DFIX instructions were used to restrain anions, solvents and Cp^{*} fragments so that there were 210 restraints in the data.

In asymmetric unit of $\mathbf{6}$, there were disordered anion and solvents (one triflate anion, three methanol and one water molecules) which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit them. The bipyridine ligand was disordered and it was divided into two parts (72:28). O8 was refined isotropically and other non-hydrogen atoms were refined anisotropically. 16 ISOR, 2 SIMU and 3 DFIX instructions were used to restrain disordered ligand so that there were 177 restraints in the data.

In asymmetric unit of $\mathbf{4 - \mathbf { O } _ { \mathbf { 2 } }}$, there were disordered anions and solvents (two triflate anion and six water molecules) which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit them.

In asymmetric unit of $\mathbf{5 -} \mathbf{O}_{\mathbf{2}}$, there were disordered anion and solvents (one triflate anion, one methanol and one diethyl ether molecules) which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit them. One pentamethylcyclopentadienyl ligand was disordered and it was divided into two parts (60:40). 18 ISOR instructions were used to restrain disordered Cp* fragments so that there were 108 restraints in the data. Hydrogen of water molecules could not be found and others were put in calculated positions.

In asymmetric unit of $\mathbf{6}-\mathbf{O}_{\mathbf{2}}$, there were disordered solvents (three acetonitrile molecules) which could not be restrained properly. Therefore, SQUEEZE algorithm was used to omit them. One triflate anion was disordered and it was divided into two parts (48:52). F8 was refined isotropically and other non-hydrogen atoms were refined anisotropically. 19 ISOR, 1 SIMU and 24 DFIX instructions were used to restrain anions, solvents and Cp* fragments so that there were 204 restraints in the data.

Table 1. Crystal data and structure refinement for 4.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.679^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

C108 H118 F12 N4 O25 Rh4 S4
2639.94

173(2) K
$1.54178 \AA$
Triclinic
P-1
$a=17.0567(6) \AA \quad \alpha=105.9447(19)^{\circ}$.
$\mathrm{b}=17.0598(7) \AA \quad \beta=111.7756(16)^{\circ}$.
$\mathrm{c}=22.6028(8) \AA \quad \gamma=94.6228(18)^{\circ}$.
5748.8(4) \AA^{3}

2
$1.525 \mathrm{Mg} / \mathrm{m}^{3}$
$6.023 \mathrm{~mm}^{-1}$
2692
$0.250 \times 0.220 \times 0.180 \mathrm{~mm}^{3}$
2.229 to 68.999°.
$-20<=\mathrm{h}<=20,-20<=\mathrm{k}<=20,-27<=\mathrm{l}<=27$
66858
20637 [R (int) $=0.0575]$
96.6 \%

Semi-empirical from equivalents
0.754 and 0.494

Full-matrix least-squares on F^{2}
20637/342/1421
1.041
$\mathrm{R} 1=0.0810, \mathrm{wR} 2=0.2286$
$\mathrm{R} 1=0.0947, \mathrm{wR} 2=0.2406$
n/a
2.583 and -1.302 e. \AA^{-3}
$a R_{I}=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right|$ (based on reflections with $\left.\mathrm{Fo}^{2}>2 \sigma \mathrm{~F}^{2}\right) ; w R_{2}=\left\{\Sigma\left[\omega\left(F o^{2}-F c^{2}\right)^{2}\right] / \Sigma\left[\omega\left(F o^{2}\right)^{2}\right]\right\}^{1 / 2} ;$
$w=1 /\left[\sigma^{2} F_{0}^{2}+(0.095 P)^{2}\right] ; P=\left[\max \left(F o^{2}, 0\right)+2 F c^{2}\right] / 3$ (also with $F o^{2>} 2 \sigma F^{2}$).

Table 2. Crystal data and structure refinement for 5.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

C150 H157 F12 N19 O14 Rh4 S4
3217.82

202(2) K
$0.71073 \AA$
Triclinic
P-1
$a=13.3420(15) \AA \quad \alpha=95.573(2)^{\circ}$.
$\mathrm{b}=22.628(3) \AA \quad \beta=90.823(2)^{\circ}$.
$\mathrm{c}=25.834(3) \AA \quad \gamma=104.286(2)^{\circ}$.
$7516.5(15) \AA^{3}$
2
$1.422 \mathrm{Mg} / \mathrm{m}^{3}$
$0.568 \mathrm{~mm}^{-1}$
3308
$0.240 \times 0.230 \times 0.210 \mathrm{~mm}^{3}$
0.793 to 25.249°.
$-16<=\mathrm{h}<=14,-27<=\mathrm{k}<=26,-31<=\mathrm{l}<=24$
43484
$26819[\mathrm{R}(\mathrm{int})=0.0568]$
98.7 \%

Semi-empirical from equivalents
0.684 and 0.497

Full-matrix least-squares on F^{2}
26819 / 210 / 1717
0.966
$\mathrm{R} 1=0.0971, \mathrm{wR} 2=0.2623$
$\mathrm{R} 1=0.1572, \mathrm{w} 2=0.3192$
n/a
2.043 and -2.070 e. \AA^{-3}
$a R_{I}=\Sigma| | F_{o}|-| F_{c} \|\left(\right.$ based on reflections with $\left.\mathrm{Fo}^{2}>2 \sigma \mathrm{~F}^{2}\right) ; w R_{2}=\left\{\Sigma\left[\omega\left(F o^{2}-F c^{2}\right)^{2}\right] / \Sigma\left[\omega\left(F o^{2}\right)^{2}\right]\right\}^{1 / 2} ;$
$w=1 /\left[\sigma^{2} F_{0}^{2}+(0.095 P)^{2}\right] ; P=\left[\max \left(F o^{2}, 0\right)+2 F c^{2}\right] / 3$ (also with $F o^{2}>2 \sigma F^{2}$).

Table 3. Crystal data and structure refinement for 6.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.679^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

C118 H132 F12 N4 O28 Rh4 S4
2822.15

173(2) K
1.54178 Å

Monoclinic
P2 $1 / n$
$a=18.2667(5) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=13.9397(4) \AA \quad \beta=100.7940(10)^{\circ}$.
$\mathrm{c}=24.7859(6) \AA \quad \gamma=90^{\circ}$.
6199.6(3) \AA^{3}

2
$1.512 \mathrm{Mg} / \mathrm{m}^{3}$
$5.644 \mathrm{~mm}^{-1}$
2888
$0.440 \times 0.320 \times 0.070 \mathrm{~mm}^{3}$
3.322 to 67.999°.
$-21<=\mathrm{h}<=21,-16<=\mathrm{k}<=14,-27<=\mathrm{l}<=29$
37173
$10929[\mathrm{R}($ int $)=0.0500]$
96.9 \%

Semi-empirical from equivalents
0.424 and 0.263

Full-matrix least-squares on F^{2}
10929 / 177 / 703
0.880
$\mathrm{R} 1=0.0613, \mathrm{wR} 2=0.1667$
$\mathrm{R} 1=0.0771, \mathrm{wR} 2=0.1863$
n/a
1.982 and -0.554 e. \AA^{-3}
$a R_{I}=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right|$ (based on reflections with $\left.\mathrm{Fo}^{2}>2 \sigma \mathrm{~F}^{2}\right) ; w R_{2}=\left\{\Sigma\left[\omega\left(F o^{2}-F c^{2}\right)^{2}\right] / \Sigma\left[\omega\left(F o^{2}\right)^{2}\right]\right\}^{1 / 2} ;$
$w=1 /\left[\sigma^{2} F_{0}^{2}+(0.095 P)^{2}\right] ; P=\left[\max \left(F o^{2}, 0\right)+2 F c^{2}\right] / 3$ (also with $F o^{2}>2 \sigma F^{2}$).

Table 4. Crystal data and structure refinement for 4-O \mathbf{O}_{2}.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.679^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

C128 H100 F12 N4 O36 Rh4 S4
3037.99

173(2) K
$1.54178 \AA$
Monoclinic
C2/c
$a=37.892(4) \AA \quad \alpha=90^{\circ}$.
$b=16.2390(15) \AA \quad \beta=130.389(5)^{\circ}$.
$\mathrm{c}=27.209(5) \AA \quad \gamma=90^{\circ}$.
12752(3) \AA^{3}
4
$1.582 \mathrm{Mg} / \mathrm{m}^{3}$
$5.592 \mathrm{~mm}^{-1}$
6144
$0.350 \times 0.240 \times 0.090 \mathrm{~mm}^{3}$
3.122 to 70.533°.
$-45<=\mathrm{h}<=25,-19<=\mathrm{k}<=18,-30<=\mathrm{l}<=33$
33179
$11959[\mathrm{R}(\mathrm{int})=0.0744]$
99.5%
Semi-empirical from equivalents
0.322 and 0.179

Full-matrix least-squares on F^{2}
11959 / 0 / 551
1.089
$\mathrm{R} 1=0.1175, \mathrm{wR} 2=0.3393$
$\mathrm{R} 1=0.1968, \mathrm{wR} 2=0.3932$
n/a
2.018 and -0.544 e. \AA^{-3}
$a R_{I}=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right|$ (based on reflections with $\left.\mathrm{Fo}^{2}>2 \sigma \mathrm{~F}^{2}\right) ; w R_{2}=\left\{\Sigma\left[\omega\left(F o^{2}-F c^{2}\right)^{2}\right] / \Sigma\left[\omega\left(F o^{2}\right)^{2}\right]\right\}^{1 / 2} ;$
$w=1 /\left[\sigma^{2} F_{0}^{2}+(0.095 P)^{2}\right] ; P=\left[\max \left(F o^{2}, 0\right)+2 F c^{2}\right] / 3$ (also with $F o^{2}>2 \sigma F^{2}$).

Table 5. Crystal data and structure refinement for $\mathbf{5 - \mathbf { O } _ { 2 }}$.

Empirical formula	C138 H152 F12 N12 O24 Rh4 S4
Formula weight	3130.59
Temperature	173(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	$a=42.7915(8) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{c}=24.5974(4) \AA \quad \gamma=90^{\circ}$.
Volume	14545.4(5) \AA^{3}
Z	4
Density (calculated)	$1.430 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$4.866 \mathrm{~mm}^{-1}$
F(000)	6432
Crystal size	$0.250 \times 0.220 \times 0.180 \mathrm{~mm}^{3}$
Theta range for data collection	2.092 to 72.546°.
Index ranges	$-52<=\mathrm{h}<=49,-16<=\mathrm{k}<=17,-30<=\mathrm{l}<=29$
Reflections collected	43998
Independent reflections	14227 [R (int) $=0.0694$]
Completeness to theta $=67.679^{\circ}$	99.5 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.754 and 0.577
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	14227 / 108 / 798
Goodness-of-fit on F^{2}	1.063
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0711, \mathrm{wR} 2=0.1999$
R indices (all data)	$\mathrm{R} 1=0.1000, \mathrm{wR} 2=0.2203$
Extinction coefficient	n / a
Largest diff. peak and hole	3.233 and -1.619 e. \AA^{-3}

$a R_{I}=\Sigma| | F_{o}|-| F_{c} \|$ (based on reflections with $\left.\mathrm{Fo}^{2}>2 \sigma \mathrm{~F}^{2}\right) ; w R_{2}=\left\{\Sigma\left[\omega\left(F o^{2}-F c^{2}\right)^{2}\right] / \Sigma\left[\omega\left(F o^{2}\right)^{2}\right]\right\}^{1 / 2}$;
$w=1 /\left[\sigma^{2} F_{0}^{2}+(0.095 P)^{2}\right] ; P=\left[\max \left(F o^{2}, 0\right)+2 F c^{2}\right] / 3$ (also with $F o^{2}>2 \sigma F^{2}$).

Table 6. Crystal data and structure refinement for 6-O \mathbf{O}_{2}.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

C136 H148 F12 N12 O26 Rh4 S4
3134.54

173(2) K
$0.71073 \AA$
Monoclinic
P21/c
$a=21.637(3) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=14.6321(17) \AA \quad \beta=100.052(2)^{\circ}$.
$\mathrm{c}=23.470(3) \AA \quad \gamma=90^{\circ}$.
7316.4(14) \AA^{3}

2
$1.423 \mathrm{Mg} / \mathrm{m}^{3}$
$0.586 \mathrm{~mm}^{-1}$
3216
$0.410 \times 0.310 \times 0.250 \mathrm{~mm}^{3}$
0.956 to 26.949°.
$-27<=\mathrm{h}<=27,-18<=\mathrm{k}<=17,-29<=\mathrm{l}<=26$
49258
15657 [$\mathrm{R}($ int $)=0.0675]$
99.5%
Semi-empirical from equivalents
0.745 and 0.618

Full-matrix least-squares on F^{2}
15657 / 204 / 874
1.008
$\mathrm{R} 1=0.0799, \mathrm{wR} 2=0.2271$
$\mathrm{R} 1=0.1230, \mathrm{wR} 2=0.2558$
n/a
4.207 and -1.687 e. \AA^{-3}
$a R_{I}=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right|$ (based on reflections with $\left.\mathrm{Fo}^{2}>2 \sigma \mathrm{~F}^{2}\right) ; w R_{2}=\left\{\Sigma\left[\omega\left(F o^{2}-F c^{2}\right)^{2}\right] / \Sigma\left[\omega\left(F o^{2}\right)^{2}\right]\right\}^{1 / 2} ;$
$w=1 /\left[\sigma^{2} F_{0}^{2}+(0.095 P)^{2}\right] ; P=\left[\max \left(F o^{2}, 0\right)+2 F c^{2}\right] / 3$ (also with $F o^{2}>2 \sigma F^{2}$).

[^0]: State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China.
 *E-mail: gxjin@fudan.edu.cn.

 ## Contents

