Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Two polymorphic Co(II) field-induced single-ion magnets with enormous angular distortion from the ideal octahedron

I. Nemec, R. Herchel and Z. Trávníček*

Regional Centre of Advanced Technologies and Materials, Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.

Figure S1 The multiplet energy levels calculated by CASSCF/NEVPT2	.2
Figure S2 In-phase χ_{real} and out-of-phase χ_{imag} molar susceptibilities for 1	.3
Figure S3 In-phase χ_{real} and out-of-phase χ_{imag} molar susceptibilities for 2	.4
Figure S4 Analysis of in-phase χ' and out-of-phase χ'' molar susceptibilities	.5
Figure S5 Analysis of in-phase χ' and out-of-phase χ'' molar susceptibilities	.5
Figure S6	.6
Table S1. Crystal data and structure refinement parameters for compounds 2 and 3	.7
Table S2 The results of the SHAPE calculations for molecular structures of 1 and 2.	.7
Table S3. Parameters of one-component Debey model for 1	.8
Table S4. Parameters of one-component Debey model for 2	.8

Figure S1 The multiplet energy levels calculated by CASSCF/NEVPT2 (black) and reconstructed energy levels with Figgis-Griffith Hamiltonian (eq.1) (red) with $\alpha \cdot \lambda = -236 \text{ cm}^{-1}$, $\Delta_{ax} = -1269 \text{ cm}^{-1}$, $\Delta_{rh} = -181 \text{ cm}^{-1}$ for **1** and with $\alpha \cdot \lambda = -246 \text{ cm}^{-1}$, $\Delta_{ax} = +1522 \text{ cm}^{-1}$, $\Delta_{rh} = +489 \text{ cm}^{-1}$ for **2**.

Figure S2 In-phase χ_{real} and out-of-phase χ_{imag} molar susceptibilities for **1** at zero static magnetic field (*left*) and in non-zero static field (*right*). Lines serve as guides for the eyes.

Figure S3 In-phase χ_{real} and out-of-phase χ_{imag} molar susceptibilities for **2** at zero static magnetic field (*left*) and in non-zero static field (*right*). Lines serve as guides for the eyes.

Figure S4 Analysis of in-phase χ' and out-of-phase χ'' molar susceptibilities for **1** (left) and **2** (right) measured at the applied external field $B_{dc} = 0.1$ T according to eq. 8. Full points – experimental data, full lines – calculated data.

Figure S5 Analysis of in-phase χ' and out-of-phase χ'' molar susceptibilities for **1** (left) and **2** (right) measured at the applied external field $B_{dc} = 0.1$ T according to eq. 10. Full points – experimental data, full lines – calculated data.

Figure S6 Low temperature (T = 113 K) X-band EPR spectra of compounds (**1**, upper) and (**2**, lower). Simulation of the EPR resonances are shown by red-lines. Experimental parameters for (**1**): 9.141 GHz Frequency, 100 KHz modulation frequency, 100 ms time constant, 0.8 mT modulation width, 2.00 mW of applied microwave power, 8 min sweep-time, 10 scans accumulated and averaged. Experimental parameters for (**2**) 9.169 GHz Frequency, 100 KHz modulation frequency, 100 KHz modulation frequency, 100 KHz modulation frequency, 100 scans accumulated and averaged. Experimental parameters for (**2**) 9.169 GHz Frequency, 100 KHz modulation frequency, 100 ms time constant, 0.8 mT modulation width, 2.60 mW of applied microwave power, 8 min sweep-time, 20 scans accumulated and averaged.

Formula	C ₂₈ H ₂₁ CoN ₂ O ₄	$C_{28}H_{21}N_2O_4Zn$
M (g·mol⁻¹)	508.42	511.86
Crystal system	Monoclinic	Monoclinic
Space group	P2 ₁ /n	C2/c
λ (Å)	0.71073	0.71073
α (Å)	11.2960(6)	17.722(3)
b (Å)	15.9061(9)	14.424(3)
<i>c</i> (Å)	13.4636(8)	9.2768(13)
eta(°)	106.951(6)	91.848(6)
<i>V</i> (ų)	2314.0(2)	2370.1(7)
Ζ	4	4
Т(К)	150(2)	150(2)
$ ho_{calcd}$ (g·cm ⁻³)	1.459	1.434
μ (mm ⁻¹)	0.780	1.070
Data/restraints/ parameters	4061/0/318	2953/0/160
$R_1^{a} [I > 2\sigma(I)]/R_1$ (all)	0.0395/0.0573	0.0392/0.0600
$wR_2^{b} [l > 2\sigma(l)]/wR_2$ (all)	0.0874/0.0915	0.1121/0.1302
Goodness-of-fit	1.032	0.964
largest peak and hole (e Å⁻³)	0.579 and -0.261	0.503/-0.427
CCDC number	1581344	1581345

Table S1. Crystal data and structure refinement parameters for compounds 2 and 3.

Table S2 The results of the SHAPE calculations for molecular structures of 1 and
--

compound	HP-6	PPY-6	OC-6	TPR-G	JPPY-6
1	26.920	19.371	6.826	12.250	22.704
2	28.242	19.857	6.432	10.685	22.680

HP-6 (D6h), Hexagon; PPY-6, (C_{5v}), Pentagonal pyramid; OC-6, (O_h), Octahedron, TPR-6, (D_{3h}), Trigonal prism; JPPY-6, (C_{5v}); Johnson pentagonal pyramid, J2.

<i>T</i> /K	$\chi_{\rm S}/(10^{-6} {\rm m}^3 {\rm mol}^{-1})$	$\chi_{\rm T}/(10^{-6} {\rm m}^3 {\rm mol}^{-1})$	α	τ/(10 ⁻⁴ s)
1.90	1.57	12.37	0.167	54.0
2.15	1.37	10.87	0.143	37.9
2.40	1.27	9.83	0.139	27.9
2.65	1.16	8.90	0.099	18.1
2.90	1.08	8.16	0.089	11.6
3.15	1.05	7.48	0.050	7.1
3.40	1.02	6.95	0.032	4.4
3.65	0.94	6.51	0.032	2.7

 Table S3. Parameters of one-component Debey model for 1 derived according eq. 4 in the main text.

 Table S4. Parameters of one-component Debey model for 2 derived according eq. 4 in the main text.

T/K	$\chi_{\rm S}/(10^{-6} {\rm m}^3 {\rm mol}^{-1})$	$\chi_{\rm T}/(10^{-6}{\rm m}^3{\rm mol}^{-1})$	α	τ/(10 ⁻⁴ s)
1.90	2.91	12.61	0.266	19.7
2.15	2.54	11.12	0.236	11.8
2.40	2.40	10.05	0.190	8.3
2.65	2.27	9.04	0.152	5.3
2.90	2.18	8.26	0.108	3.3
3.15	1.44	7.62	0.097	1.9