Heterometallic hexanuclear Ni_4M_2 (M = Dy, Y) complexes:

structure and single-molecule magnet for the Dy(III) derivative

Shaomin Pei,^a Zhaobo Hu,^a Zilu Chen,^{*,a} Shui Yu,^a Bo Li,^{*,b} Yuning Liang,^a Dongcheng Liu,^a Di Yao^a and Fupei Liang^{*,a,c}

^a State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China. E-mail: zlchen@mailbox.gxnu.edu.cn; fliangoffice@yahoo.com

^b College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China. E-mail: libozzu0107@163.com

^c Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China. E-mail: fliangoffice@yahoo.com

Electronic Supplementary Information

Dy1-O9	2.266(3)	O5-Dy1-O3	85.62(11)	07-Ni1-O5	175.53(11)
Dy1-O5	2.311(3)	O10-Dy1-O3	155.59(10)	N1-Ni1-O5	88.02(13)
Dy1-O10	2.378(3)	O2-Dy1-O3	81.99(13)	N4A-Ni1-O5	84.24(13)
Dy1-O2	2.402(3)	O9-Dy1-O4	80.40(11)	011A-Ni1-O5	79.07(11)
Dy1-O3	2.406(3)	O5-Dy1-O4	117.06(12)	O10-Ni1-O5	85.41(11)
Dy1-O4	2.410(3)	O10-Dy1-O4	150.64(10)	09-Ni2-09A	84.90(11)
Dy1-O1	2.454(3)	O2-Dy1-O4	93.18(12)	O9-Ni2-N3	93.07(12)
Dy1-O11A	2.461(3)	O3-Dy1-O4	53.71(11)	O9A-Ni2-N3	166.49(12)
Dy1-Ni1	3.0968(6)	O9-Dy1-O1	125.02(10)	O9-Ni2-N2	164.80(13)
Dy1-Ni2	3.3985(6)	O5-Dy1-O1	76.60(10)	O9A-Ni2-N2	93.18(12)
Ni1-O7	2.037(3)	O10-Dy1-O1	79.87(10)	N3-Ni2-N2	92.18(14)
Ni1-N1	2.055(3)	O2-Dy1-O1	53.64(10)	O9-Ni2-O11	93.93(11)
Ni1-N4A	2.063(4)	O3-Dy1-O1	78.67(12)	O9A-Ni2-O11	83.82(10)
Ni1-O11A	2.094(3)	O4-Dy1-O1	126.59(11)	N3-Ni2-O11	83.00(12)
Ni1-O10	2.100(3)	O9-Dy1-O11A	72.17(9)	N2-Ni2-O11	100.86(13)
Ni1-O5	2.256(3)	O5-Dy1-O11A	70.95(9)	O9-Ni2-O10	82.57(10)
Ni2-09	2.048(3)	O10-Dy1-O11A	71.83(9)	O9A-Ni2-O10	92.35(10)
Ni2-O9A	2.048(3)	O2-Dy1-O11A	153.13(10)	N3-Ni2-O10	100.64(12)
Ni2-N3	2.102(3)	O3-Dy1-O11A	119.89(12)	N2-Ni2-O10	82.44(12)
Ni2-N2	2.102(3)	O4-Dy1-O11A	88.98(11)	O11-Ni2-O10	175.05(10)
Ni2-O11	2.125(3)	O1-Dy1-O11A	140.37(9)	Ni1-O5-Dy1	85.39(10)
Ni2-O10	2.128(3)	07-Ni1-N1	96.31(14)	Ni1-O10-Dy1	87.27(9)
Ni2-Dy1A	3.4352(5)	O7-Ni1-N4A	95.76(14)	Ni1A-O11-Dy1A	85.27(9)
		N1-Ni1-N4A	103.85(14)	Ni2-O9-Dy1	103.86(11)
O9-Dy1-O5	138.49(10)	07-Ni1-011A	96.48(11)	Ni2A-O9-Dy1	105.43(11)
O9-Dy1-O10	72.77(9)	N1-Ni1-O11A	163.92(13)	Ni2-O10-Dy1	97.76(10)
O5-Dy1-O10	78.18(10)	N4A-Ni1-O11A	84.51(12)	Ni2-O11-Dy1A	96.74(10)
O9-Dy1-O2	81.78(10)	O7-Ni1-O10	93.91(11)	Ni2-O9-Ni2A	95.11(11)
O5-Dy1-O2	130.13(10)	N1-Ni1-O10	84.23(12)	Ni1-O10-Ni2	126.51(12)
O10-Dy1-O2	94.54(10)	N4A-Ni1-O10	166.61(13)	Ni1A-O11-Ni2	124.93(14)
O9-Dy1-O3	129.94(10)	O11A-Ni1-O10	85.21(10)		

Table S1 Selected bond lengths / Å and bond angles / ° for 1.

Symmetry code: A) 0.5 - x, 0.5 - y, -z.

Y1-09	2.2495(18)	O5-Y1-O3	85.71(8)	07-Ni1-O5	175.27(8)
Y1-O5	2.3003(19)	O10-Y1-O3	155.18(7)	N1-Ni1-O5	88.15(9)
Y1-O10	2.3579(18)	O2-Y1-O3	81.29(9)	N4A-Ni1-O5	84.49(9)
Y1-O2	2.389(2)	O9-Y1-O4	80.36(7)	011A-Ni1-O5	78.79(7)
Y1-O3	2.390(2)	O5-Y1-O4	116.33(8)	O10-Ni1-O5	84.83(7)
Y1-O4	2.396(2)	O10-Y1-O4	150.93(7)	09A-Ni2-09	84.91(7)
Y1-O1	2.446(2)	O2-Y1-O4	93.38(9)	O9A-Ni2-N3	165.99(8)
Y1-011A	2.4502(18)	O3-Y1-O4	53.83(8)	O9-Ni2-N3	93.05(9)
Y1-Ni1	3.0904(5)	09-Y1-O1	125.17(7)	O9A-Ni2-N2	93.40(9)
Y1-Ni2	3.3841(5)	O5-Y1-O1	76.63(7)	O9-Ni2-N2	164.28(8)
Ni1-07	2.031(2)	O10-Y1-O1	79.63(7)	N3-Ni2-N2	92.23(10)
Ni1-N1	2.055(2)	O2-Y1-O1	53.92(7)	09A-Ni2-011	83.46(7)
Nil-N4A	2.060(3)	O3-Y1-O1	78.30(8)	O9-Ni2-O11	94.13(7)
Nil-OllA	2.1004(18)	O4-Y1-O1	126.84(8)	N3-Ni2-O11	82.87(8)
Ni1-O10	2.1018(18)	09-Y1-011A	72.23(6)	N2-Ni2-O11	101.21(8)
Ni1-O5	2.253(2)	O5-Y1-O11A	71.13(7)	O9A-Ni2-O10	92.87(7)
Ni2-O9A	2.0460(18)	O10-Y1-O11A	72.33(6)	O9-Ni2-O10	82.28(7)
Ni2-O9	2.0473(18)	02-Y1-011A	153.17(7)	N3-Ni2-O10	100.60(8)
Ni2-N3	2.102(2)	O3-Y1-O11A	120.15(8)	N2-Ni2-O10	82.20(8)
Ni2-N2	2.103(2)	04-Y1-011A	88.23(7)	O11-Ni2-O10	175.10(7)
Ni2-O11	2.1216(18)	01-Y1-011A	140.66(7)	Ni1-O5-Y1	85.47(7)
Ni2-O10	2.1347(18)	07-Ni1-N1	96.40(10)	Ni1-O10-Y1	87.53(6)
Ni2-Dy1A	3.4265(4)	O7-Ni1-N4A	95.66(10)	NilA-O11-Y1A	85.19(6)
		N1-Ni1-N4A	103.76(10)	Ni2-O9-Y1	103.82(7)
O9-Y1-O5	138.84(7)	07-Ni1-O11A	96.51(8)	Ni2A-09-Y1	105.72(8)
O9-Y1-O10	73.32(6)	N1-Ni1-O11A	163.80(9)	Ni2-O10-Y1	97.62(7)
O5-Y1-O10	78.25(7)	N4A-Ni1-O11A	84.64(9)	Ni2-O11-Y1A	96.83(7)
O9-Y1-O2	81.63(7)	O7-Ni1-O10	94.29(8)	Ni2A-O9-Ni2	95.09(7)
O5-Y1-O2	130.41(7)	N1-Ni1-O10	84.34(9)	Ni1-O10-Ni2	126.03(8)
O10-Y1-O2	94.75(7)	N4A-Ni1-O10	166.36(9)	Ni1A-O11-Ni2	125.04(9)
09-Y1-O3	129.54(7)	O11A-Ni1-O10	84.97(7)		

Table S2 Selected bond lengths / Å and bond angles / ° for 2.

Symmetry code: A) 0.5 - x, 0.5 - y, -z.

Fig. S1 PXRD patterns of 1.

Fig. S2 PXRD patterns of 2.

Fig. S3 FT-IR spectrum of complex 1.

Fig. S4 FT-IR spectrum of complex 2.

Fig. S5 TG curve of complex **1**. It reveals a weight loss of 5.2% before 110 °C, which corresponds to the loss of one water molecule and one mono-dentate coordinated acetate ion (5.35%). After a platform in the temperature range of 110-260 °C, complex **1** underwent a fast weight loss before 370 °C, and then a much slow weight loss, which is ascribed to the collapse of the skeleton of complex **1**.

Fig. S6 TG curve of complex **2**. It reveals a slow weight loss of 5.45% before 270 °C, which corresponds to the loss of one water molecule and one mono-dentate coordinated acetate ion (5.26%). Then it underwent a fast weight loss before 380 °C with a followed slow weight loss, which is ascribed to the collapse of the skeleton of complex **2**.

Fig. S7 A "distortion chair" like in the Ni_4O_4 core.

Fig. S8 Plots of Magnetic hysteresis loops for 1.

Fig. S9 χ' -*T* and χ'' -*T* plots for **2** with $H_{dc} = 0$ Oe and $H_{ac} = 3$ Oe.