Supporting Information File

A new series of tetrahedral Co(II) complexes [CoLX₂] (X = NCS, Cl, Br, I) manifesting single-ion magnet features

Amit Kumar Mondal,^a Mahesh Sundararajan^{*b} and Sanjit Konar^{*a}

^a Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, M. P., India.

^b Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400085, India.

	1	2	3	4
Formula	$C_{41}H_{32}CoN_2OP_2S_2$	$C_{39}H_{32}Cl_2CoOP_2$	$C_{39}H_{32}Br_2CoOP_2$	$C_{42}H_{40}Cl_2I_2CoO_5P_2$
$M_w(g mol^{-1})$	753.68	708.42	797.32	1070.31
Crystal size (mm)	0.50×0.19×0.15	0.45×0.15×0.10	0.48×0.20×0.18	0.42×0.14×0.11
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	<i>P</i> -1	<i>P</i> 2 ₁ /c	<i>P</i> 2 ₁ /c	<i>P</i> 2 ₁ /m
T (K)	177(2)	140(2)	140(2)	296(2)
a (Å)	9.5642(8)	16.8684(9)	16.884(2)	9.856(2)
b (Å)	10.6421(9)	10.4873(7)	10.6015(14)	18.907(4)
c (Å)	18.4548(16)	40.263(2)	40.409(5)	12.358(3)
α (°)	90.493(4)	90	90	90
β (°)	101.033(4)	111.257(3)	109.960(5)	107.427(3)
γ (°)	99.395(4)	90	90	90
V (Å ³)	1817.4(3)	6638.1(7)	6798.6(15)	2197.2(8)
Z	2	8	8	2
$ ho_{ m calcd} (m g m cm^{-3})$	1.377	1.418	1.558	1.618
$\mu(MoK\alpha) (mm^{-1})$	0.711	0.806	2.981	2.031
F(000)	778	2920	3208	1058.0
T_{max}, T_{min}	0.889, 0.860	0.933, 0.855	0.575, 0.484	0.810, 0.728
h, k, l range	$-12 \le h \le 12, -14 \le k \le 14, -24 \le l \le 24$	$-22 \le h \le 22, -13 \le k$ $\le 13, -52 \le l \le 53$	$-22 \le h \le 22, -14 \le k$ $\le 12, -54 \le l \le 54$	$-11 \le h \le 11, -22 \le k$ $\le 22, -14 \le l \le 14$
Collected reflections	8946	15917	17412	4022
Independent reflections	6267	9475	9110	3311
Goodness-of-fit (GOF) on F ²	1.073	0.984	1.009	1.034
R1, wR2 (I > $2\sigma I$)	0.0479, 0.1080	0.0561, 0.1087	0.0850, 0.1083	0.0720, 0.2056
R1, wR2 (all data)	0.0860, 0.1251	0.1254, 0.1387	0.1947, 0.1335	0.0858, 0.2208
CCDC Number	1460756	1460754	1460755	1520987

Table S1. X-ray Crystallographic Data and Refinement Parameters for complexes 1-4.

 $R1 = \Sigma ||Fo| - |Fc|| / \Sigma ||Fo||$ and $wR2 = |\Sigma w (|Fo|^2 - |Fc|^2) | / \Sigma ||w (Fo)^2|^{1/2}$

Table S2. Bond distances (Å) around Co^{II} centers found in complexes 1-4.

	1	2		3		4	
Co – P2	2.369(2)	Co – P5	2.382(3)	Co – P3	2.373(1)	Co – P1	2.364(2)
Co – P1	2.375(1)	Co – P6	2.374(3)	Co – P4	2.363(2)	Co – P1'	2.364(2)
Co – N2	1.919(1)	Co – Cl1	2.237(1)	Co – Br1	2.375(1)	Co – I1	2.555(1)
Co – N1	1.930(1)	Co – Cl2	2.200(1)	Co – Br2	2.345(1)	Co – I2	2.554(1)

Table S3. Bond angles ($\underline{\)}$) around Co^{II} centers found in complexes 1-4.

1		2		3		3 4		
P2-Co1-P1	112.82(4)	Cl1–Co1–Cl2	115.28(3)	Br1-Co1-Br2	117.52(2)	I2-Co1-I1	118.53(2)	
P2-Co1-N2	104.80(4)	Cl1-Co1-P5	107.03(5)	Br1-Co1-P3	105.78(3)	I2-Co1-P1	105.79(2)	
P2-Co1-N1	112.93(4)	Cl1-Co1-P6	103.73(5)	Br1–Co1–P4	102.91(2)	I2-Co1-P1'	105.79(3)	
P1-Co1-N2	112.69(4)	Cl2-Co1-P5	108.06(5)	Br2–Co1–P3	107.27(2)	I1-Co1-P1	107.00(3)	
P1-Co1-N1	99.22(3)	Cl2–Co1–P6	108.38(5)	Br2–Co1–P4	109.26(2)	I1-Co1-P1'	107.00(3)	
N2-Co1-N1	114.70(3)	P5-Co1-P6	114.55(5)	P3-Co1-P4	114.32(1)	P1-Co1-P1'	112.92(2)	

Fig. S1. Distorted tetrahedral coordination geometry around the Co^{II} centers in complexes 1-4.

Shape analysis

Table S4: Summary of SHAPE analysis for complexes 1-4.

SP-4	1	D_{4h}	Square
T-4	2	T_{d}	Tetrahedron
SS-4	3	C_{2v}	Seesaw
vTBPY-4	4	C_{3v}	Vacant trigonal bipyramid

Structure [ML ₄]	SP-4	T-4	SS-4	vTBPY-4
Complex 1	28.596	0.281	7.907	3.535
Complex 2	28.439	0.383	7.771	3.393
Complex 3	28.359	0.519	6.622	3.293
Complex 4	30.728	1.201	7.871	3.345

Fig. S2. A view of supramolecular 2D arrangement of complex 1 through intermolecular H-bonding and $\pi \cdots \pi$ interactions.

Fig. S3. Packing arrangement of complex 1 along the crystallographic *a*-axis (left); Packing arrangement of complex 1 along the crystallographic *b*-axis, after removing the outer sphere ligand and keeping only the tetrahedral Co^{II} cores (right).

Fig. S4. A view of supramolecular 2D arrangement of complex 2 through intermolecular H-bonding and $CH\cdots\pi$ interactions.

Fig. S5. Packing arrangement of complex 2 along the crystallographic *b*-axis.

Fig. S6. Packing arrangement of complex **2** along the crystallographic *b*-axis, after removing the outer sphere ligand and keeping only the tetrahedral Co^{II} cores.

Fig. S7. A view of supramolecular 2D arrangement of complex 3 through intermolecular H-bonding and CH $\cdots\pi$ interactions.

Fig. S8. Packing arrangement of complex 3 along the crystallographic *b*-axis.

Fig. S9. Packing arrangement of complex 3 along the crystallographic *b*-axis, after removing the outer sphere ligand and keeping only the tetrahedral Co^{II} cores.

Fig. S10. A view of supramolecular 2D arrangement of complex 4 through intermolecular H-bonding and CH $\cdots\pi$ interactions.

Fig. S11. A view of packing diagram of complex **4** illustrating the continuous 2D arrangement of lattice solvent molecules along the crystallographic *a*-axis.

Fig. S12. Packing arrangement of complex 4 along the crystallographic *a*-axis, after removing the outer sphere ligand and keeping only the tetrahedral Co^{II} cores.

D- H···A	D-H(Å)	H···A(Å)	D…A (Å)	<d-h-a< b="">(°)</d-h-a<>	Symmetry [#]
C21—H21…N2	0.950	2.737	2.581	156.22	0
C23—H23…N1	0.950	2.914	3.410	113.84	0
C27—H27…O1	0.950	2.779	3.348	119.32	0
C35—H35…N2	0.950	2.869	3.692	145.58	0
C33—H33…N1	0.950	2.901	3.746	148.79	0
C7—H7C…O1	0.980	2.743	3.268	114.08	0
C1—H1…S2	0.950	2.927	3.669	135.81	1
C15—H15C…S1	0.980	2.837	3.757	156.78	2
C37—H37…S1	0.950	2.984	3.865	154.83	3
C36—H36…N1	0.950	2.705	3.649	172.51	4

Table S5. H-bond parameters found in complex 1.

= (0) x, y, z; (1) x+1, +y+1, z; (2) x, +y+1, +z; (3) -x+1, -y, -z+1; (4) -x, -y, -z+1.

Table S6. H-bond parameters found in complex 2.

D– H···A	D-H(Å)	H···A(Å)	D····A (Å)	<d-h-a< b="">(°)</d-h-a<>	Symmetry [#]
C152—H152…O2	0.930	2.738	3.605	155.49	0
C120—H120…Cl6	0.930	2.868	3.710	151.25	1
C128—H128…Cl1	0.930	2.948	3.869	171.14	2
C134—H134…O3	0.930	2.727	3.596	155.98	3
C143—H14D…Cl1	0.960	2.897	3.746	148.09	4
C102—H102…C15	0.930	2.948	3.874	173.60	5
C146—H146…C15	0.930	2.858	3.773	168.31	5
C83—H83…Cl1	0.930	2.939	3.860	170.58	6

(0) x,y,z; (1) -x+1,-y,-z; (2) x,+y-1,+z; (3) x-1,+y,+z; (4) -x+1,+y-1/2,-z+1/2; (5) x,+y+1,+z; (6) x+1,+y-1,+z.

Table S7. H-bond parameters found in complex 3.

D– H···A	D-H(Å)	H····A(Å)	DA (Å)	<d-h-a< b="">(°)</d-h-a<>	Symmetry [#]
C116—H116…O1	0.930	2.747	3.598	152.61	0
C128—H128…O3	0.930	2.751	3.620	155.79	1
C136—H136…Br3	0.930	2.989	3.916	174.72	2
C142—H14D…Br1	0.960	2.992	3.862	151.28	3
C82—H82…Br1	0.930	2.917	3.839	171.47	4
C93—H93C…Br3	0.960	2.940	3.817	152.34	5
C102—H102…Br2	0.930	2.974	3.832	154.21	6

(0) x,y,z; (1) x-1,+y,+z; (2) x,+y-1,+z; (3) -x+1,+y+1/2,-z+1/2; (4) x+1,+y+1,+z; (5) -x+2,+y-1/2,-z+1/2; (6) -x+1,-y,-z.

Table S8. H-bond parameters found in complex 4.

D– H····A	D-H(Å)	H···A(Å)	D····A (Å)	<d-h-a< b="">(°)</d-h-a<>	Symmetry [#]
C14—H14…O6	0.930	2.866	3.440	121.13	0
C8—H8…O1A	0.930	2.929	3.349	108.98	0
C16—H16B…O1A	0.960	2.882	3.358	111.75	0
C28—H28A…O5	0.960	1.645	2.215	113.82	0
C15—H15…O6	0.930	2.885	3.565	131.00	1
C11—H11…Cl1	0.930	2.956	3.726	141.10	2
C5—H5…Cl1	0.930	2.991	3.728	137.33	3
	#	(0) $x,y,z;(1) -x+1,-y+1,-z+2;$	(2) $x,+y,+z-1$; (3) $-x,-y+1,-z-1$	+1.	-

Fig. S13. PXRD patterns of complexes 1 (left) and 2 (right).

Fig. S14. PXRD patterns of complexes 3 (left) and 4 (right).

Fig. S15. $\chi_M T vs. T$ plots measured at 0.1 T for complex **3** (a) and **4** (b). $1/\chi_M vs. T$ plots shown in the inset; $M/N\mu_B vs. H$ plots for complex **3** (c) and **4** (d) at the indicated temperatures. The red lines are the best fit.

Fig. S16. $M/N\mu_B vs. H/T$ plots at the indicated temperatures for complexes 1-4 (a-d). The red lines are the best fit.

Fig. S17. Frequency dependency of the in-phase (χ_M') (a and b) and out-of-phase (χ_M'') (c and d) AC magnetic susceptibility plots for complex **3** and **4** under 1000 Oe dc field.

Fig. S18. Cole-Cole plots for complex 3 (a) and 4 (b). Solid lines represent the best fit; $\ln (1/\tau) vs. 1/T$ plots for complex 3 (c) and 4 (d). The red lines are the best fit of the Arrhenius relationship.

Experimental information for dilution studies:

Synthesis of [Zn(L)(Cl)₂] (5)

Ligand (57 mg, 0.1 mmol) was dissolved in CH_2Cl_2 (5 ml) and the solution was stirred at room temperature. Then, ZnCl₂ (14 mg, 0.1 mmol) dissolved in MeOH (5 ml) was added dropwise to the above ligand solution. The resulting solution forms an intense blue mixture that was stirred further for 2 hrs. The solution was then filtered off and the filtrate was left at open atmosphere for slow evaporation which yields large X-ray quality yellow crystals of [Zn(L)(Cl)₂] (**5**) after 2 days. The crystals were separated, washed with cold water and Et₂O and air-dried yield (70 %). Anal. Calcd for $C_{39}H_{32}ZnCl_2P_2O$: C, 65.50; H, 4.51 %. Found: C, 65.57; H, 4.42 %.

Fig. S19. View of the molecular structure of complex 5; hydrogen atoms are omitted for clarity.

Table S9. X-ray Crystallographic Data and Refinement Parameters for complex 5.

Fig. S20. PXRD patterns of diluted sample (left); Frequency dependency of the out-of-phase (χ_M'') AC magnetic susceptibility plot for diluted sample at 1000 Oe dc field (right).

Fig. S21. Optimized structure of complexes 1-4 (a-d) at the DFT level along with *ab initio* computed *D*-tensor orientation.

	1	2	3	4
Co-P, Å	2.345,2.345	2.339	2.336,2.337	2.337,2.338
	(2.372)	(2.378)	(2.366)	(2.364)
Co-X, Å	1.873, 1.869	2.215, 2.223	2.352, 2.363	2.542, 2.554
	(1.924)	(2.221)	(2.356)	(2.554)
α, °	114.33	115.51	115.14	114.97
,	(112.82)	(114.22)	(114.67)	(112.92)
β, °	121.48	118.50	117.15	114.95
	(114.70)	(116.34)	(116.57)	(118.53)

 Table S10. Optimized structural parameters of complexes 1-4.^a

^{*a*} Values in brackets are from experiments

	1	2	3	4
Δ	-5864	-4897	-4459	-4057
10Da	5324	4424	4149	3849
10Dq	(4967)	(4333)	(4333)	(4033)
μ	-541	-473	-310	-207
В	940	948	945	932
β^{a}	0.869	0.876	0.873	0.861
С	3880	3939	3944	3916
Ζ	505.2	504.0	495.5	473.4
0		21	1	1

Table S11. AILFT and the ligand field splitting parameters for the four complexes (in cm⁻¹).

 ${}^{a}\beta = B/B_{0}$, $B_{0} = Racah parameter of free Co²⁺ ion = 1082 cm⁻¹ (1120 cm⁻¹)$

Table S12. Comparison of the experimental absorption maxima and calculated electronic transition energies ^{*a*} (in cm^{-1}).

level	1	2	3	4
${}^{4}A_{2} \rightarrow {}^{4}T_{2}(F)$	4400 (5092.1)	4000 (4248.4)	4000 (4094.7)	3800 (3834.1)
${}^{4}A_{2} \rightarrow {}^{4}T_{2}(F)$	4800 (5455.5)	4300 (4450.6)	4300 (4220.5)	4000 (4298.3)
${}^{4}A_{2} \rightarrow {}^{4}T_{2}(F)$	5700 (7567.2)	4700 (6140.8)	4700 (5862.2)	4300 (5563.5)
${}^{4}A_{2} \rightarrow {}^{4}T_{1}(F)$	7600 (8221.6)	6200 (7385.0)	5900 (7258.7)	5700 (7242.0)
${}^{4}A_2 \rightarrow {}^{4}T_1(F)$	8400 (10011.2)	7400 (8744.2)	6900 (8428.8)	6800 (8254.6)
${}^{4}A_{2} \rightarrow {}^{4}T_{1}(F)$	9350 (13232.7)	9050 (11941.4)	8800 (11526.5)	8650 (11172.5)
${}^{4}A_{2} \rightarrow {}^{4}T_{1}(P)$	16200 (17971.2)	15700 (17934.2)	15400 (18306.6)	14500 (18829.9)
${}^{4}\overline{A_{2}} \rightarrow {}^{4}T_{1}(P)$	16800 (22159.3)	16400 (21057.3)	16100 (20611.1)	15200 (20221.3)
${}^{4}A_{2} \rightarrow {}^{4}T_{1}(P)$	17800 (23849.2)	17100 (21959.0)	16500 (21071.1)	16000 (20281.8)

^{*a*} calculated values in brackets.