Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2018

Supplementary Information For:

Extraordinary Sensitivity for H₂S and Fe(III) Sensing in Aqueous Medium by Al-MIL-53-N₃ Metal-Organic Framework: In Vitro and In Vivo Applications of H₂S Sensing

Aniruddha Das,^a Sooram Banesh,^b Vishal Trivedi,^b and Shyam Biswas^{*a}

^a Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India

^b Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039 Assam, India

* To whom correspondence should be addressed. E-mail: sbiswas@iitg.ernet.in; Tel: 91-3612583309.

Figure S1. XRPD patterns of **1** in different forms: as-synthesized, thermally activated, after sensing of H_2S and Fe^{3+} ion.

Figure S2. FE-SEM images of 1'.

Figure S3. FT-IR spectra of as-synthesized 1 (black), thermally activated (red) 1', and 1' after treatment with Na_2S (green). The absorption band for the $-N_3$ group is high-lighted by the blue ovals.

Figure S4. TG curves of as-synthesized 1 (black) and thermally activated 1' (red) recorded in an air atmosphere in the temperature range of 25-700 °C with a heating rate of 10 °C min⁻¹.

Figure S5. N₂ adsorption (black circles) and desorption (red circles) isotherms of 1' measured at -196 °C.

Figure S6. CO₂ adsorption isotherms of 1' measured at 25 °C.

Figure S7. Fluorescence turn-on response of 1' (in HEPES buffer) towards the addition of Na_2S at a regular time interval (60 s) up to 600 s. Inset: time-dependence of fluorescence intensity at 425 nm.

Figure S8. Fluorescence response of 1' in presence of different analytes in water.

Figure S9. Fluorescence response of 1' towards Na₂S in presence of other interfering analytes in water.

Figure S10. Change in the fluorescence intensity of 1' in aqueous suspension as a function of Na₂S concentration.

Time (ns) Figure 11. Lifetime decay profile of 1' before and after addition of 100 μ L of 0.21 (M) Na₂S solution.

Figure S12. Fluorescence turn-off response of Al-MIL-53 (in aqueous medium) towards the addition of Na_2S at a regular time interval (60 s) up to 300 s.

Figure S13. Change in fluorescence intensity of Al-MIL-53 (in aqueous medium) with increasing concentration of Na_2S (up to 10 equiv.).

Figure S14. HR-MS spectrum of 1' after digestion in MeOH/HF. The spectrum shows m/z (negative ion mode) peak at 206.1883 (negative ion mode), which corresponds to (M-H)⁻ ion (M = mass of H₂BDC-N₃ ligand).

Figure S15. HR-MS spectrum of Na₂S-treated **1'** after digestion in MeOH/HF. The spectrum shows m/z (negative ion mode) peak at 181.0206 which correspond to $(M-H)^-$ ion of reduced H₂BDC-N₃ i.e. H₂BDC-NH₂ ligand.

Figure S16. ¹H NMR spectra of (a) **1'** and (b) Na₂S-treated **1'** after digestion in DMSO-d₆/HF. In the spectrum of Na₂S-treated **1'**, a new peak appears at 10.07 ppm, which can be assigned to the protons for the–NH₃⁺ group attached with the protonated form of H₂BDC-NH₂ ligand.

Figure S18. Cell viability in 1' - treated J774A.1 cells: (A) The cells either remained untreated or treated with the probe (0-100 μ M) for a period of 24 h and the change in morphology was monitored. The shape of the 1' - treated cells was found intact even at 100 μ M concentration of the probe. (B) The MTT assay was performed and the cells treated with the probe showed almost 100% cell viability (the data is representative of three independent experiments).

Figure S19. Change in the fluorescence intensity of 1' upon incremental addition of 2 mM Cr^{3+} solution.

Figure S20. Change in the fluorescence intensity of 1' upon incremental addition of 2 mM Co²⁺ solution.

Figure S21. Change in the fluorescence intensity of 1' upon incremental addition of 2 mM Ca^{2+} solution.

Figure S22. Change in the fluorescence intensity of 1' upon incremental addition of 2 mM Pb²⁺ solution.

Figure S23. Change in the fluorescence intensity of 1' upon incremental addition of 2 mM Ni²⁺ solution.

Figure S24. Change in the fluorescence intensity of 1' upon incremental addition of 2 mM Cu²⁺ solution.

Figure S25. Change in the fluorescence intensity of 1' upon incremental addition of 2 mM Zn^{2+} solution

Figure S26. Change in the fluorescence intensity of 1' upon incremental addition of 2 mM Cd²⁺ solution.

Figure S27. Change in the fluorescence intensity of 1' upon incremental addition of 2 mM Hg^{2+} solution.

Figure S28. Change in the fluorescence intensity of 1' upon incremental addition of 2 mM Mn^{2+} solution.

Figure S29. Change in the fluorescence intensity of 1' upon incremental addition of 2 mM Na⁺ solution.

Figure S30. Change in the fluorescence intensity of 1' upon incremental addition of 2 mM K⁺ solution.

Figure S31. Change in the fluorescence intensity of **1'** upon incremental addition of 2 mM Ag⁺ solution.

Figure S32. Change in the fluorescence intensity of 1' upon incremental addition of 2 mM Fe^{2+} solution.

Figure S33. Change in the fluorescence intensity of 1' upon incremental addition of 2 mM Al^{3+} solution.

Figure S34. Change in the fluorescence intensity of **1'** upon addition of 2 mM Cr^{3+} solution (150 μ L) in presence of Fe³⁺ (150 μ L) solution.

Figure S35. Change in the fluorescence intensity of 1' upon addition of 2 mM Co²⁺ solution (150 μ L) in presence of Fe³⁺ (150 μ L) solution.

Figure S36. Change in the fluorescence intensity of 1' upon addition of 2 mM Cd²⁺ solution (150 μ L) in presence of Fe³⁺ (150 μ L) solution.

Figure S37. Change in the fluorescence intensity of 1' upon addition of 2 mM Ca²⁺ solution (150 μ L) in presence of Fe³⁺ (150 μ L) solution.

Figure S38. Change in the fluorescence intensity of **1'** upon addition of 2 mM Pb²⁺ solution (150 μ L) in presence of Fe³⁺ (150 μ L) solution.

Figure S39. Change in the fluorescence intensity of **1'** upon addition of 2 mM Ni²⁺ solution (150 μ L) in presence of Fe³⁺ (150 μ L) solution.

Figure S40. Change in the fluorescence intensity of 1' upon addition of 2 mM Cu²⁺ solution (150 μ L) in presence of Fe³⁺ (150 μ L) solution.

Figure S41. Change in the fluorescence intensity of 1' upon addition of 2 mM Zn²⁺ solution (150 μ L) in presence of Fe³⁺ (150 μ L) solution.

Figure S42. Change in the fluorescence intensity of 1' upon addition of 2 mM Hg²⁺ solution (150 μ L) in presence of Fe³⁺ (150 μ L) solution.

Figure S43. Change in the fluorescence intensity of 1' upon addition of 2 mM Mn^{2+} solution (150 µL) in presence of Fe³⁺ (150 µL) solution.

Figure S44. Change in the fluorescence intensity of 1' upon addition of 2 mM Na⁺ solution (150 μ L) in presence of Fe³⁺ (150 μ L) solution.

Figure S45. Change in the fluorescence intensity of **1'** upon addition of 2 mM K⁺ solution (150 μ L) in presence of Fe³⁺ (150 μ L) solution.

Figure S46. Change in the fluorescence intensity of 1' upon addition of 2 mM Ag⁺ solution (150 μ L) in presence of Fe³⁺ (150 μ L) solution.

Figure S47. Change in the fluorescence intensity of 1' upon addition of 2 mM Fe²⁺ solution (150 μ L) in presence of Fe³⁺ (150 μ L) solution.

Figure S48. Change in the fluorescence intensity of $\mathbf{1'}$ upon addition of 2 mM Al³⁺ solution (150 μ L) in presence of Fe³⁺ (150 μ L) solution.

Figure S49. Stern-Volmer plot for the fluorescence quenching of 1' upon addition of Fe^{3+} solution.

Figure 50. Lifetime decay profile of 1' before and after addition of 150 μ L of 2 mM Fe³⁺ solution.

Figure S51. Change in the fluorescence intensity of 1' in aqueous suspension as a function of Fe^{3+} concentration.

Figure S52. Reproducibility of the fluorescence quenching efficiency of the aqueous suspension of 1' towards 2 mM Fe^{3+} solution.

Element	Weight%	Atomic%
C K	41.35	50.69
O K	46.53	42.82
Al K	11.70	6.38
Fe K	0.42	0.11
Total	100.00	100.00

Figure 53. EDX spectrum of **1'** after treatment with 2 mM Fe³⁺ aqueous solution.

Figure S54. Spectral overlap between the absorption spectra of different metal ions and the emission spectra of 1' in water.

Sl. No.	Compound	Micropore volume	Ref.
		$(cm^{3}g^{-1})$	
1.	Al-MIL-53-N ₃	0.34	This Work
2.	Al- MIL-53	0.54	1
3.	Al-MIL-53-Cl	0.32	1
4.	Al-MIL-53-Br	0.14	1
5.	Al-MIL-53-CH ₃	0.32	1
6.	Al-MIL-53-NO ₂	0.34	1
8.	Al-MIL-53-(OH) ₂	0.04	1
9.	Al-MIL-53-NH ₂	0.44	1
10.	Al-MIL-53-F	0.48	2
11.	Al-MIL-53-F ₂	0.16	3

Table S1. Micropore volumes (at $p/p_0 = 0.5$) of the Al-MIL-53-X compounds determined from N₂ adsorption isotherms.

Table S2. Comparison of the repose time, detection limit and analyte used for H_2S detection for MOFs reported till date.

S1.	MOF	Response	Detection	Medium	Analyte	Ref.
No.		time (s)	Limit	Used		
1.	Al-MIL-53-N ₃	180	90.47 nM	H ₂ O	Na ₂ S	This
						work
2.	CAU-10-N ₃	420	2.65 μM	HEPES buffer	Na ₂ S	4
				(10 mM, pH = 7.4)		
3.	Ce-UiO-66-N ₃	760	12.20 μM	HEPES buffer	NaSH	5
				(10 mM, pH = 7.4)		
4.	Ce-UiO-66-NO ₂	760	34.84 μM	HEPES buffer	NaSH	5
				(10 mM, pH = 7.4)		
5.	Zr-DUT-52-(NO ₂) ₂	3300	20.00 µM	HEPES buffer	Na ₂ S	6
				(10 mM, pH = 7.4)		
6.	Zr-UiO-66-N ₃	180	118.00 μM	HEPES buffer	Na ₂ S	7
				(10 mM, pH = 7.4)		
7.	Zr-UiO-66-NO ₂	≈ 460	188.00 µM	HEPES buffer	Na ₂ S	8
				(10 mM, pH = 7.4)		
8.	IRMOF-3-N ₃	< 120	28.30 µM	HEPES ethanol buffer	NaSH	9
				(pH = 7.4)		
9.	MN-ZIF-90	-	-	PBS buffer	-	10
				(10 mM, pH = 7.4, 1%)		
				DMSO)		
10.	Al-TCPP-Cu	-	-	BBS buffer	-	11
				(20 mM, pH = 7.40)		
11.	Al-MIL-101-N ₃	-	100 μM	DMSO;	Na ₂ S	12
			(UV-lamp	HBSS buffer		

			excitation);	(pH = 8.2)		
			100 nm			
			(laser			
			excitation)			
12.	Eu ³⁺ /Cu ²⁺ @UiO-66-	30	5.45 μM	Borate buffer	NaSH	13
	(COOH) ₂			(0.1 M, pH 8.5)		
13.	Tb ³⁺ @Cu-MOF	120	1.20 μM	HEPES buffer	Na ₂ S	14
				(10 mM, pH = 7.4)		

Table S3. Average excited-state lifetime ($\langle \tau \rangle$) values of 1' before and after addition of 100 µL of 0.21 (M) Na₂S solution ($\lambda_{ex} = 308$ nm).

Volume of Na_2S solution	B ₁	B ₂	a ₁	a ₂	τ_{I} (ns)	$ au_2$ (ns)	< ₇ >* (ns)	χ^2
added (µL)								
0	0.0681	0.0091	0.415	0.585	0.702	7.429	4.637	1.020
100	0.0368	0.000	1.00	0.000	8.949	0.000	8.949	1.002

 $<\tau>*=a_1\tau_1+a_2\tau_2$

Table S4. A comparison of the Stern-Volmer constant (K_{sv}), detection limit and medium used for the sensing of Fe³⁺ ion for MOFs reported till date.

Sl.	MOF	$K_{\rm sv}$ (×10 ⁴	Detection	Medium	Ref.
No.		M ⁻¹)	Limit	Used	
1.	Al-MIL-53-N ₃	61.32	0.03 µM	Water	This work
2.	Al-MIL-53	-	0.90 µM	PBS Buffer	15
3.	[Zr ₆ O ₄ (OH) ₄ (2,7- CDC) ₆]·19H ₂ O·2DMF	0.55	0.91 µM	Water	16
4.	$[La(TPT)(DMSO)_2] \cdot H_2O$	1.36	-	Ethanol	17
5.	$[H(H_2O)_8][DyZn_4(imdc)_4(im)_4]$	2.88	-	DMSO	18
6.	EuL ₃	0.41	100.0 μM	Ethanol	19
7.	$[Eu_2(MFDA)_2(HCOO)_2(H_2O)_6] \cdot H_2O$	-	0.33 μM	DMF	20
8.	$[Cd(H_2L_a)_{0.5}(H_2L_b)_{0.5}(H_2O)]$	-	10.0 µM	Water	21
9.	$[(CH_3)_2NH_2] \cdot [Tb(bptc)] \cdot x$ solvents	-	72.76 ppm	Ethanol	22
10.	$[Ln_2(Ccbp)_3 \cdot 6H_2O] \cdot 3Cl^{-} \cdot 4H_2O$	11.43	-	Ethanol	23
11.	Eu ³⁺ @MIL-124	3.87	0.28 μM	Water	24
11.	$[Ln(Hpzbc)_2(NO_3)] \cdot H_2O$	-	26.0 µM	Ethanol	25

12.	$[Tb(BTB)(DMF)] \cdot 1.5DMF \cdot 2.5H_2O$	-	10.0 µM	Ethanol	25
13.	$[Tb_4(OH)_4(DSOA)_2(H_2O)_8] \cdot (H_2O)_8$	3.5	-	Water	26
14.	$[Ba_5(ADDA)_5(EtOH)_2(H_2O)_3]$ · 5DMF	-	0.21 μM	Acetone	27
15.	Tb ³⁺ @Cd-MOF	11.08	10.0 mM	DMF	28

Table S5. Average excited state lifetime ($\langle \tau \rangle$) values of 1' before and after addition of 150 µL of 2 mM Fe³⁺ solution ($\lambda_{ex} = 308$ nm).

Volume of	B ₁	B ₂	a ₁	a ₂	τ_{l} (ns)	τ_2 (ns)	<7>*	χ^2
Fe ³⁺ solution							(ns)	
added (µL)								
0	0.0673	0.0145	0.183	0.817	0.443	9.222	7.62	0.997
150	0.0983	0.0010	0.919	0.806	0.437	3.699	3.38	0.960

 $* < \tau > = a_1 \tau_1 + a_2 \tau_2$

References

- 1. S. Biswas, T. Ahnfeldt and N. Stock, *Inorg. Chem.*, 2011, **50**, 9518–9526.
- S. Biswas, T. Remy, S. Couck, D. Denysenko, G. Rampelberg, J. F. M. Denayer, D. Volkmer, C. Detavernier and P. V. D. Voort, *Phys. Chem. Chem. Phys.*, 2013, 15, 3552-3561.
- 3. S. Biswas, S. Couck, D. Denysenko, A. Bhunia, J. F. M. Denayer, D. Volkmer, C. Janiak and P. V. D. Voort, *Microporous Mesoporous Mater.*, 2013, **181**, 175-181.
- 4. S. Nandi, H. Reinsch, S. Banesh, N. Stock, V. Trivedi and S. Biswas, *Dalton Trans.*, 2017, doi: 10.1039/C1037DT02293J.
- 5. A. Buragohain and S. Biswas, *CrystEngComm*, 2016, **18**, 4374–4381.
- R. Dalapati, S. N. Balaji, V. Trivedi, L. Khamari and S. Biswas, Sens. Actuators, B, 2017, 245 1039–1049.
- 7. S. S. Nagarkar, T. Saha, A. V. Desai, P. Talukdar and S. K. Ghosh, *Sci. Rep.*, 2014, 4, 7053-7058.
- 8. S. S. Nagarkar, A. V. Desai and S. K. Ghosh, *Chem. Eur. J.*, 2015, 21, 9994–9997.
- 9. X. Zhang, J. Zhang, Q. Hu, Y. Cui, Y. Yang and G. Qian, *Appl. Surf. Sci.*, 2015, **355**, 814-819.
- 10. H. Li, X. Feng, Y. Guo, D. Chen, R. Li, X. Ren, X. Jiang, Y. Dong and B. Wang, *Sci. Rep.*, 2014, **4**, 4366-4370.
- 11. Y. Ma, H. Su, X. Kuang, X. Li, T. Zhang and B. Tang, *Anal. Chem.*, 2014, **86**, 11459-11463.
- 12. A. Legrand, A. Pastushenko, V. Lysenko, A. Geloen, E. A. Quadrelli, J. Canivet and D. Farrusseng, *ChemNanoMat*, 2016, **2**, 866 872.
- 13. X. Zhang, Q. Hu, T. Xia, J. Zhang, Y. Yang, Y. Cui, B. Chen and G. Qian, ACS Appl. Mater. Interfaces, 2016, 8, 32259-32265.

- 14. X. Zheng, R. Fan, Y. Song, A. Wang, K. Xing, X. Du, P. Wang and Y. Yang, J. Mater. Chem. C, 2017, 5, 9943-9951.
- 15. C.-X. Yang, H.-B. Ren and X.-P. Yan, Anal. Chem. , 2013, 85, 7441–7446.
- 16. A. Das and S. Biswas, Sens. Actuators, B, 2017, 250, 121–131.
- 17. C. Zhang, Y. Yan, Q. Pan, L. Sun, H. He, Y. Liu, Z. Liang and J. Li, *Dalton Trans.*, 2015, **44**, 13340-13346.
- 18. Y.-F. Li, D. Wang, Z. Liao, Y. Kang, W.-H. Ding, X.-J. Zheng and L.-P. Jin, J. Mater. Chem. C, 2016, 4, 4211-4217.
- 19. M. Zheng, H. Tan, Z. Xie, L. Zhang, X. Jing and Z. Sun, *ACS Appl. Mater. Interfaces*, 2013, **5**, 1078-1083.
- 20. X.-H. Zhou, L. Li, H.-H. Li, A. Li, T. Yang and W. Huang, *Dalton Trans.*, 2013, 42 12403-12409.
- 21. Y. Wu, G.-P. Yang, Y. Zhang, N. Shi, J. Han and Y.-Y. Wang, *RSC Adv.*, 2015, 5, 90772-90777.
- 22. X.-L. Zhao, D. Tian, Q. Gao, H.-W. Sun, J. Xu and X.-H. Bu, *Dalton Trans.*, 2016, **45**, 1040-1046.
- 23. K.-M. Wang, L. Du, Y.-L. Ma, J.-S. Zhao, Q. Wang, T. Yan and Q.-H. Zhao, *CrystEngComm*, 2016, **18**, 2690-2700.
- 24. X.-Y. Xu and B. Yan, ACS Appl. Mater. Interfaces, 2014, 7, 721-729.
- 25. C.-X. Yang, H.-B. Ren and X.-P. Yan, Anal. Chem., 2013, 85, 7441-7446.
- X.-Y. Dong, R. Wang, J.-Z. Wang, S.-Q. Zang and T. C. Mak, J. Mater. Chem. A, 2015, 3, 641-647.
- R. Wang, X. Liu, A. Huang, W. Wang, Z. Xiao, L. Zhang, F. Dai and D. Sun, *Inorg. Chem.*, 2016, 55, 1782–1787.
- 28. H. Weng and B. Yan, Sens. Actuator B, Chem., 2016, 228, 702-708.