Supporting Information for

A nickel(II)-manganese(II)-azido layered coordination polymer showing a three-dimensional ferrimagnetic order at 35 K

Sagar Ghosh,^a Shuvayan Roy,^a Cai-Ming Liu,^{*b} and Sasankasekhar Mohanta^{*a}

^a Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India, Fax: 91-33-23519755, E-mail: sm cu chem@yahoo.co.in.

^b Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China. E-mail: cmliu@iccas.ac.cn

Temperature (T K)	Coercive field	Remnant Magnetization
	$(H_C Oe)$	$(M_R N\beta)$
1.9	65	1.739
3	34	1.73
4	28.5	1.262
8	12.4	0.947
10	5	0.82
15	5	0.491
20	4.5	0.233
25	1.5	0.096

Table S1. Coercive field and remnant magnetization of 1 at different temperatures

Fig. S1. Curie–Weiss fitting of the χ_M^{-1} versus *T* data of $[\{(Ni^{II}LMn^{II})_2(\mu_{1,1,3}-N_3)_2\}(\mu_{1,3}-N_3)_2]_n(1)$ in the temperature range 100–300 K. The experimental data is shown as black circles and the red line corresponds to the fitted values.

Fig. S2. Hysteresis loops for **1** at 4.0, 8.0, 10.0 and 25.0 K. Inset: Parts of the loops with an enlargement of the low-field region.