Sensitized near infrared emission through supramolecular d→f energy transfer within an ionic Ru(II) – Er(III) pair

Hai-Bing Xu,*a,c Xue-Li Chen, a Jian-Guo Deng, b Zhi-Hua Deng, b Shi-Liang Huang, b

Mohamedally Kurmoo,§ and Ming-Hua Zeng*a

^aHubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.

^bNew Materials R&D Center, Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China.

^cState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

[§]Institut de Chimie de Strasbourg, CNRS-UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France.

Received xx, xx, 2017

Table S1. Examples of $Ru \rightarrow Ln$ energy transfer for sensitized lanthanide emission

Intramolecular $d \rightarrow f$ energy transfer		
Complexes	d-f distance (Å)	Ref.
through-space multipola	r energy transfe	er
Category	Ι	
$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & $	~12	Angew. Chem. Int. Ed. 2000 , 39, 4319–4321
HO = O = O = O = O = O = O = O = O = O =	~12	Inorg. Chem., 2004 , 43, 3965–3975
M = M = M = M = M = M = M = M = M = M =	~15	<i>Dalton Trans.</i> , 2005 , 1482–1490
V (6)h6L06	8.70	Chem. Eur. J., 2005 , 11, 3228–3242

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	~10.5	Chem. Commun., 2004 , 1486–1487
$\begin{array}{c ccccc} & & & & & & \\ & & & & & \\ & & & &$	5.44	Inorg. Chem. 2005 , 44, 4656–4665
$\begin{array}{c c} & R_{u} & & N & N \\ & & & & \\$	5.46	Inorg. Chem. 2006 , 45, 3895–3904
$P^{\dagger}[Ph]_{4}$ $Ru \qquad Or \qquad O \qquad Ru \\ C, O-N \qquad O \qquad O \qquad Ru \\ C, O-N \qquad O \qquad O \qquad N-O \qquad C \qquad O = 0 \\ O=N \qquad Er-N \equiv C - Ru - C \equiv N - Er \qquad N=O \\ O=N \qquad N \qquad N \qquad N \qquad N \qquad O \\ O=O \qquad C \qquad C \qquad O \qquad O \qquad N \qquad N \qquad N \qquad O \\ C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad C \qquad O \qquad O \qquad O \qquad O \qquad O = 0 \\ C \qquad C \qquad C \qquad O = 0 \\ C \qquad C \qquad C \qquad O \qquad $	5.41	Inorg. Chem. 2006 , 45, 6756–6760
$\begin{array}{c} & \mathbb{R}^{u} \\ & \mathbb{C} \\ &$	5.50	Dalton Trans. 2006 , 39–50

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5.63	J. Am. Chem. Soc., 2007 , 129, 11491– 11504
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5.55	Dalton Trans. 2007 , 2419–2430
PPhy N PPhy N PP	~7.5	Eur. J. Inorg. Chem., 2007 , 2853–2861
H_{Bu} CI N Ru N N N N N CI N	6.22	<i>Dalton Trans.</i> 2008 ,691–698
$Bu^{1} \qquad N \qquad N \qquad Part \\ Bu^{1} \qquad N \qquad N \qquad N \qquad N \qquad Part \\ Bu^{1} \qquad N \qquad N \qquad N \qquad N \qquad N \qquad N \qquad Part \\ Bu^{1} \qquad N \qquad N \qquad N \qquad N \qquad N \qquad Part \\ Bu \qquad N \qquad $		Dalton Trans., 2008 ,

$ \begin{array}{c} $		
(bipy) ₂ M N RuPh-Ln RuPh-Ln A S 3	~20	Chem. Eur. J., 2008 , 14, 9389–9399
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	8.67	J. Am. Chem. Soc. 2011 , 133, 6174–6176
$\begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & $	~12.7	Dalton Trans., 2012 , 41, 11219–1225
$\begin{array}{c} \begin{array}{c} \begin{array}{c} P^{h} P^{h} & P^{h} \\ C \\ P^{h} & P^{h} \\ C \\ P^{h} & P^{h} \\ P^{h} \\$	8.53	<i>Organometallics,</i> 2014 , <i>33</i> , 4824-4835

$\left(\begin{array}{c} CF_{3} & F_{3}C \\ CF_{3} & F_{3}C \\ CF_{3} & F_{3}C \\ CF_{3} & F_{3}C \end{array}\right)^{\ominus} \left(\begin{array}{c} CH_{3} \\ COOH \end{array}\right)$		ACS Photonics, 2014 , 1, 394–397
$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		<i>Eur. J. Inorg. Chem.</i> 2017 , 2100
$F_{3}C \rightarrow CF_{3} \rightarrow N \rightarrow NH$ $F_{3}C \rightarrow O \rightarrow CF_{3} \rightarrow N \rightarrow NH$ $F_{3}C \rightarrow O \rightarrow CF_{3} \rightarrow N \rightarrow NH$ $F_{3}C \rightarrow CF_{3} \rightarrow N \rightarrow NH$	8.6	This work

	N(C ₂ H ₅) ₄ [Eu(hfac) ₄]	1
empirical formula	$C_{28}H_{24}EuF_{24}NO_8$	$C_{56}H_{30}ErF_{27}N_8O_{10}Ru$
fw	1085.91	1756.21
space group	$P 2_1/n$	C 2/c
<i>a</i> , Å	13.325(4)	18.085(6)
b, Å	16.993(5)	37.766(12)
<i>c</i> , Å	18.776(6)	11.710(4)
a, deg	90.00	90.00
β , deg	94.905(4)	112.791(6)
γ, deg	90.00	90.00
<i>V</i> , Å ³	4236(2)	7373(4)
Ζ	4	4
$ ho_{ m calcd}, { m g/cm^3}$	1.703	1.582
μ , mm ⁻¹	1.625	1.458
radiation (λ , Å)	0.71073	0.71073
temp, K	293(2)	293(2)
$R_{I} (F_{o})^{[a]}$	0.0886	0.0543
$wR_2(F_o^2)^{[b]}$	0.2769	0.1575
GOF	1.025	0.941

Table S2. Crystallographic Data of $N(C_2H_5)_4[Eu(hfac)_4]$ and 1.

^[a] $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|,$ ^[b] $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$

	1	N(C ₂ H ₅) ₄ [Eu(hfac) ₄]
O1–Ln	2.047(18)	2.406(4)
O2–Ln	2.187(18)	2.373(4)
O3–Ln	2.27(2)	2.406(3)
O4–Ln	2.07(4)	2.397(4)
O5–Ln		2.405(4)
O6–Ln		2.389(4)
O7–Ln		2.392(4)
O8–Ln		2.383(4)
O1–Ln–O4	85.2(14)	75.86(14)
O2–Ln–O3	76.0(10)	74.24(13)
O5–Ln–O7		76.77(14)
O6–Ln–O8		71.17(13)

Table S3. Bond lengths (Å) and angles (°) in 1 and N(C₂H₅)₄[Eu(hfac)₄]

Figure S1. The H-bonds between $[Ru(bpy)_2(dbim)]^{2+}$ and $[CF_3COO]^-$ in 1.

Figure S2. (a) The H-bonds between $[Er(hfac)_4]^-$ and $[Ru(bpy)_2(dbim)]^{2+}$ moieties. The purple dashed lines correspond to C-H...F interactions. (b) The distance between the metal centres of $[Er(hfac)_4]^-$ and $[Ru(bpy)_2(dbim)]^{2+}$ moieties.

Figure S3. The crystal packing of $[Er(hfac)_4]^-$ and $[Ru(bpy)_2(dbim)]^{2+}$ moieties in **1** viewed along *a* (left) and *c* (right)-axis. For clarity, the $[CF_3COO]^-$ and hydrogen atoms are omitted.

Figure S4. Coordination environment of Er^{III} and Eu^{III}.

Figure S5. Titration of $Ru(bpy)_2(dbim)(PF_6)_2$ with $N(C_2H_5)_4Er(hfac)_4$ in dichloromethane solutions, showing blue-shift in electronic absorption spectra. The molar ratio between $Ru(bpy)_2(dbim)(PF_6)_2$ and $N(C_2H_5)_4Er(hfac)_4$ are 1 : 0 (blue), 1: 0.5 (red), 1 : 1 (black), and 1:1.5 (cyan), respectively.

Figure S6. A full normalized excitation ($\lambda_{em} = 1535$ nm, red) and emission ($\lambda_{em} = 420$ nm, black) spectra of **1** in solid state at room temperature

Figure S7. Lifetime decay curves of 1 in solid state after heating to remove solvent molecule in crystals.

Figure S8 Excitation (λ_{em} = 1535 nm, red) and emission (λ_{ex} = 420 nm, blue) spectra of 1, and the absorption spectra of N(C₂H₅)₄[Eu(hfac)₄] (black) in dichloromethane solutions with a concentration of 10⁻⁵ M.