Supporting information

A metal-organic framework based multifunctional catalytic platform for organic transformation and environmental remediation

Harpreet Kaur^a, M. Venkateswarulu^b, Suneel Kumar^d, Venkata Krishnan and Rik Rani Koner^a*

^aSchool of basics Sciences, Indian Institute of Technology Mandi, Mandi-175001, HP India.

^bSchool of Engineeing, Indian Institute of Technology Mandi, Mandi-175001, HP India.

S. No	Contents	No.
1	Synthesis scheme of Cd-MOF	Figure S1
2	Crystal images of Cd-MOF and Iodine@Cd-MOF	Figure S2
3	Iodine adsorption desorption	Figure S3
4	Crystal data and structure refinement for Cd-MOF	Table S1
5	SEM images of Cd MOF and Iodine captured Cd-MOF	Figure S4 (a to d)
6	EDAX patterns of Cd-MOF and Iodine captured Cd-MOF	Figure S5 (a, b)
7	TEM images of Cd-MOF and Iodine captured Cd-MOF	Figure S6 (a, b)
8	EDAX patterens of Cd-MOF and Iodine captured Cd-MOF	Figure S7 (a, b)
9	UV-Vis Absorbance spectra and Histogram of 0.1M hexane solution of iodine	Figure S8 (a,b)
10	Iodine desorption study	Figure S9
11	N ₂ Adsorption isotherms	Figure S10
12	HR-MS and ¹ H-NMR data of various benzimidazoles drivatives	Figure S11 to S22

13	HRMS and ¹ H-NMR spectra of 5-(2- thienyl)dipyrromethane	Figure S23, S24
14	TGA curves for iodine releasing profile during synthesis of 5-(2-thienyl)dipyrromethane and Histogram of % Yield vs reaction cycle	Figure S25 (a,b)
15	TEM image and EDAX pattern of $I_2@Cd-MOF$ recovered after organic reaction	Figure S26 (a,b)
16	XRD patterns of Cd-MOF, Cd-MOF recovered after photocatalytic degradation of MB dye, I ₂ @Cd-MOF, recovered I ₂ @Cd-MOF after organic catalytic reaction	Figure S27 (a to d)
17	DRS spectra of Cd-MOF	Figure S28
18	TEM image and EDAX pattern of Cd-MOF recovered after photocatalytic dye degradation	Figure S29 (a, b)
19	Successive time dependent UV-vis spectra showing the photocatalytic degradation of MB under visible light irradiation from 2 nd to 4 ^{rth} cycles and under UV light irradiation	Figure S30(a to d)
20	Different reported MOFs used for the MB degradation	Table S2
21	Proposed mechanism for the MB degradation on the basis of peaks obtained in LC-MS	Figure S31
22	LC-MS spectra of MB degradation	Figure S32 to S34

Figure S1. Synthesis scheme of Cd-MOF.

Figure S2. (a) Crystals of Cd-MOF and (b) Iodine@Cd-MOF.

Figure S3. Iodine adsorption and desorption.

1.	Identification code	Cd-MOF
2.	Emperical Formula	C ₁₈ H ₈ CdN ₃ O ₄
3.	Formula weight	442.67
4.	Temperature/K	150.00(10)
5.	Crystal System	Orthorhombic
6.	Space group	P21212
7.	Unit Cell dimensions	a/Å=20.9793(4), b /Å=13.5240(4) c/Å=11.6673(3), $\alpha/^{\circ}$ =90.00, $\beta/^{\circ}$ =90.00, $\gamma/^{\circ}$ =90.00
8.	Volume/ Å ³	3310.29(13)
9.	Z	4
10.	P _{calc} g/cm ³	0.888
11.	$\mu \text{ mm}^{-1}$	0.674
12.	F(000)	868.0
13.	Crystal size/mm ³	0.354×0.151×0.128
14.	2θ range for data collection	3.88 to 56.56
15.	Index ranges	$-27 \le h \le 23, -17 \le k \le 11, -14 \le l \le 11$

 Table S1. Crystal data and structure refinement for Cd-MOF.

16.	Reflection collected	7832
17.	Independent reflections	$6201[R_{int}=0.0211, R_{sigma}=0.0516]$
18.	Goodness-of-fiton F ²	1.181
19.	Final R indexes [I> $2\sigma(1)$]	$R_1 = 0.0713, WR_2 = 0.2217$
20.	Final R indexes(all data)	$R_1 = 0.0753$, $wR_2 = 0.2289$
21.	Largest diff. peak/ hole/eÅ ⁻³	1.66/-1.12
22.	Flack parameter	0.44 (7)

Figure S4. SEM images of Cd-MOF (a, b) and Iodine captured Cd-MOF (c,d).

Figure S5. EDAX patterns of (a) Cd-MOF. (b) Iodine captured Cd-MOF.

Figure S6. TEM images of (a) Cd-MOF. (b) Iodine captured Cd-MOF.

Figure S7. EDAX patterens of (a) Cd-MOF. (b) Iodine captured Cd-MOF.

Figure S8. (a) UV-vis absorbance spectra of 0.1M hexane solution of iodine. (b) Histogram of 0.1M hexane solution of iodine.

Figure S9: Photographs showing color change of ethanol sloution containing Iodine loaded MOF crystals .

Figure S10. N₂ adsorption isotherms of Cd-MOF and Iodine loaded MOF (Iodine@Cd-MOF). On the basis of N₂ adsorption studies, BET surface area for Cd-MOF and I₂@Cd-MOF at 77K was found to be 16.749 m^2/g and 12.463 m^2/g respectively.

Measurements	Cd-MOF	I2@Cd-MOF
Volume of N ₂ gas adsorbed (cm^3g^{-1})	17.186	7.549
BET- Surface Area(m ² /g)	16.749	12.463
Pore Radius (Å)	21.505	16.924

HRMS and ¹H-NMR data of various benzimidazole derivatives:

Figure S11. HRMS spectra of 2-phenyl-1H-benzo[d]imidazole in MeOH.

Figure S12. ¹H-NMR spectra of 2-phenyl-1H-benzo[d]imidazole in DMSO-d₆.

Figure S13. HRMS spectra of 6-methyl-2-phenyl-1H-benzo[d]imidazole in MeOH.

Figure S14. ¹H-NMR spectra of 6-methyl-2-phenyl-1H-benzo[d]imidazole in DMSO-d₆.

Figure S15. HRMS spectra of phenyl(2-phenyl-1H-benzo[d]imidazol-5-yl)methanone in MeOH.

Figure S16. ¹H-NMR spectra of phenyl(2-phenyl-1H-benzo[d]imidazol-5-yl)methanone in DMSO-d₆.

Figure S17. HRMS spectra of 2-(4-fluorophenyl)-1H-benzo[d]imidazole in MeOH.

Figure S18. ¹H-NMR spectra of 2-(4-fluorophenyl)-1H-benzo[d]imidazole in DMSO-d₆.

Figure S19. HRMS spectra of 2-(4-bromophenyl)-1H-benzo[d]imidazole in MeOH.

Figure S20. ¹H-NMR spectra of 2-(4-bromophenyl)-1H-benzo[d]imidazole in DMSO-d₆.

Figure S21. HRMS spectra of 4-(1H-benzo[d]imidazol-2-yl)-N,N-dimethylbenzenamine in MeOH.

Figure S22. ¹H-NMR spectra of 4-(1H-benzo[d]imidazol-2-yl)-N,N-dimethylbenzenamine in DMSO-d₆.

Figure S23. HRMS spectra of 5-(2-thienyl)dipyrromethane in MeOH.

Figure S24. ¹H-NMR spectra of 5-(2-thienyl)dipyrromethane in CDCl₃.

Figure S25. (a) TGA curve for Iodine releasing profile during the synthesis of 5-(2-thienyl)dipyrromethane. (b) % Yield in each consecutive cycles during synthesis of 5-(2-thenyl)dipyrromethane.

Figure S26. TEM image (a) and EDAX pattern (b) of $I_2@Cd-MOF$ recovered after organic reaction.

Figure S27. XRD patterns of (a) Cd-MOF. (b) Cd-MOF recovered after photocatalytic degradation of MB dye. (c) $I_2@Cd-MOF$. (d) $I_2@Cd-MOF$ recovered after organic catalytic reaction.

Figure S28. DRS spectra of Cd-MOF.

Figure S29. TEM image (a) and EDAX pattern (b) of Cd-MOF recovered after photocatalytic dye degradation.

Figure S30. Successive time dependent UV-vis spectra showing the photocatalytic degradation of MB (a to c) under visible light irradiation from 2^{nd} to 4^{rth} cycles. (d) under UV light irradiation.

TableS2.	Different repo	orted MOFs	used for the	MB degradation.
	1			0

MOF	Light source	%Degradation Efficiency	Time (min)	Reference
[Cu(ONCP)(4,4'- H ₂ BPDA)0.5(H ₂ O) (4,4'- H ₂ BPDA)] _n	500watt Tungsten lamp	71.61	300	Y. Liu, S. Xie, H. Li, X. Wang, <i>ChemCatChem</i> , 2014, 6 , 2522-2526.
[Zn(TBTC)(2,6pydc)] _n	500watt Xenon lamp	80	270	M. Saranya, R. Ramachandran, P. Kollu, S. K. Jeong, A. N. Grace, <i>RSC Adv.</i> , 2015, 5 , 15831-15840.
[Co ₂ (1,4'- BDC)(NCP) ₂] _n .4H ₂ O	500watt Tungsten lamp	62.75	300	CB. Liu, HY. Sun, XY. Li, HY. Bai, Y. Cong, A. Ren, GB. Che, <i>Inorg.</i> <i>Chem.Commun.</i> ,2014, 47 , 80-83
[Zn (4 bpah)(1,3- bdc)](H ₂ O)	UV	40	240	CB. Liu, Y. Cong, H Y. Sun, GB. Che, <i>Inorg. Chem.Commun.</i> , 2014, 47 , 71-74.
[Cu(3-dpye)(3-npa)(H ₂ O)].3(H ₂ O)	UV	70	240	HY. Sun, CB. Liu, Y. Cong, MH. Yu, HY. Bai, GB. Che, <i>Inorg.</i> <i>Chem. Commun.</i> , 2013, 35 , 130-134.

Figure S31. Proposed mechanism for the MB degradation on the basis of peaks obtained in LC-MS.

Figure S32. LC-MS spectra containing peaks in the range of 153 to 230.

Figure S33. LC-MS spectra containing peaks in the range of 230 to 240.

Figure S34. LC-MS spectra containing peaks in the range of 250 to 325.