Supporting Information

Enhancement of visible-light-driven CO₂ reduction performance

using amine-functionalized zirconium metal-organic framework

Manying Sun,^a Siyu Yan,^a Yujia Sun,^a Xiaohan Yang,^a Zhifen Guo,^b Jianfeng Du,^c Dashu Chen,^{*a} Peng Chen,^d and Hongzhu Xing^{*b}

^aDepartment of Chemistry and Chemical Engineering, College of Science, Northeast Forestry University, Harbin 150040, China. E-mail:chends410@nenu.edu.cn ^bProvincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun, 130024, China. E-mail:xinghz223@nenu.edu.cn ^cState Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China. ^dKey Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.

Fig. S1 The TG curve of as-synthesized Zr-SDCA-NH₂.

Fig. S2 The IR spectrum of as-synthesized Zr-SDCA-NH₂.

Fig.S3 The isosteric heat (Q_{st}) of CO₂ adsorption for Zr-SDCA-NH₂ calculated from the CO₂ adsorption isotherms at 273 and 298 K, employing the Clausius-Clapeyron equation.

Fig. S4 The UV–vis spectra of H_2SDCA ligand in the solid state.

Fig. S5 The Tauc plot of H_2 SDCA- NH_2 ligand.

Fig. S6 Mott-Schottky plots of H_2 SDCA-N H_2 ligand in 0.2 M N a_2 SO₄ aqueous solution.

Fig. S7 The PXRD pattern of Zr-SDCA-NH₂ after the photocatalytic experiment.

Fig. S8 The recycling of Zr-SDCA-NH₂ for CO₂ photoreduction under 6 h visible light irradiation.

material	average formation rate of HCOO [−] [µmol/h·mmol _{MOF}]	catalytic sites	light absorption region of MOFs [nm]	constitution ^a	Ref.
H ₂ N-UIO-66(Zr)	46.3	metal cluster	200 440	$Zr_6O_4(OH)_4(L_1)_6$	1
Mixed H ₂ N-UIO-66(Zr)	73.4	metal cluster	200 550	Zr ₆ O ₄ (OH) ₄ (L ₁) _{4.8} (L ₂) _{1.2}	1
H ₂ N-UIO-66(Zr,Ti)-120-16	71.9	metal cluster	200 480	Zr _{2.6} Ti _{3.4} O ₄ (OH) ₄ (L ₁) ₆	2
Zr-SDCA-NH ₂	96.2	metal cluster,	200 600	$Zr_6O_4(OH)_4(L)_6$	This
		organic ligand			work

References

- D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu and Z. Li, *Chem.-Eur. J.*, 2013, 19, 14279-14285.
- 2. D. Sun, Y. Gao, J. Fu, X. Zeng, Z. Chen and Z. Li, Chem. Commun., 2015, 51, 2645-2648.