SUPPORTING INFORMATION of SYNTHESES, STRUCTURES, AND COMPUTATIONS

1,3,2-Diazaborole-Derived Carbene Complexes of Boron

Hunter P. Hickox, Yuzhong Wang, Kaitlin M. Luedecke, Yaoming Xie, Pingrong Wei, Deidrah Carrillo, Nathaniel L. Dominique, Dongtao Cui, Henry F. Schaefer III, and Gregory H. Robinson*

Department of Chemistry and the Center for Computational Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States.

To whom correspondence should be addressed. Email: robinson@uga.edu

SUPPORTING INFORMATIONS of SYNTHESES

Materials and Methods

General.

The syntheses of air-sensitive compounds were performed under purified argon using Schlenk techniques and an inert atmosphere drybox (M-Braun LabMaster SP). Chemicals were purchased from Aldrich and Strem and used as received. The solvents were dried and distilled under argon from Na/benzophenone prior to use. ¹H NMR, ¹³C{¹H} NMR, and ¹¹B NMR spectra were recorded on a Bruker Avance III HD 400 MHz spectrometer and a Varian Unity Inova 500 MHz spectrometer. X-ray intensity data for **2**, **3**, and **4** were collected at room temperature on a Bruker D8 Quest PHOTON 100 CMOS X-ray diffractometer system with Incoatec Microfocus Source (IµS) monochromated Mo K α radiation ($\lambda = 0.71073$ Å, sealed tube) using phi and omega-scan technique. Elemental analyses were performed by Complete Analytical Laboratories, Inc. (Highland Park, NJ).

Compound **2**: 8.9 mL of 1.0 M BBr₃ (in hexanes, 8.90 mmol) solution was added to a Schlenk flask containing **1** (1.037 g, 2.22 mmol) in 25 mL of hexane at room temperature. The mixture was then stirred overnight, giving **2** in a quantitative yield with excess BBr₃ (in terms of the ¹H NMR data). X-ray quality crystals of **2** were observed after crystallization of **2** in the concentrated parent solution at -20 °C overnight. Mp: gradually decomposed (>144°C). ¹H NMR (400.14 MHz, CD₂Cl₂): δ 1.25-1.27 [multiple d, *J* = 4.0 Hz, 12H, CH(CH₃)₂], 1.34 [d, *J* = 4.0 Hz, 6H, CH(CH₃)₂], 1.41 [d, *J* = 4.0 Hz, 6H, CH(CH₃)₂], 2.69 [m, *J* = 8.0 Hz, 2H, CH(CH₃)₂], 2.83 [m, *J* = 8.0 Hz, 2H, CH(CH₃)₂], 5.82 [s, 2H, N-CH₂], 7.28-7.32 [multiple d, *J* = 8.0 Hz, 4H, Ar-*H*], 7.44 [t, *J* = 8.0 Hz, 1H, Ar-*H*], 7.51 [t, J = 8.0Hz, 1H, Ar-*H*]. ¹³C{¹H} NMR (100.63 MHz, CD₂Cl₂): δ 24.22, 24.64, 24.93, 24.99 [CH(CH₃)₂], 29.69, 30.30 [CH(CH₃)₂], 69.88 [NCCH₂], 124.88, 125.17, 130.32, 131.19, 132.85, 133.91, 143.35, 145.79 [Ar-C], 132.61 [NCCH₂]. ¹¹B NMR (C₆D₆, 160.35 MHz): δ For **2**, +30.28 (NBN), -14.42 (CBBr₃); For **1**, +20.10 (NBN); For free BBr₃, +37.14. Anal. (CALI, Highland Park, NJ) Calcd (found) for **2**: C 43.50 (43.48); H 5.06 (5.19); N 3.90 (3.82).

Compound **3**: 25 mL of hexane was added to a Schlenk flask containing **1** (1.000 g, 2.14 mmol) and BI₃ (0.922 g, 2.35 mmol) at room temperature. The resulting mixture was stirred overnight, giving **3** in a quantitative yield with excess BI₃ (in terms of the ¹H NMR data). X-ray quality yellow crystals of **3** were observed after recrystallization of **3** in 1,2-difluorobenzene at -20 °C overnight. Mp: 148.2°C. ¹H NMR (400.14 MHz, CD₂Cl₂): δ 1.22-1.26 [multiple d, J = 8.0 Hz, 12H, CH(CH₃)₂], 1.31 [d, J = 8.0 Hz, 6H, CH(CH₃)₂], 1.45 [d, J = 8.0 Hz, 6H, CH(CH₃)₂], 2.72 [m, J = 8.0 Hz, 2H, CH(CH₃)₂],

2.88 [m, J = 8.0 Hz, 2H, $CH(CH_3)_2$], 6.42 [s, 2H, N- CH_2], 7.27-7.30 [multiple d, J = 8.0 Hz, 4H, Ar-H], 7.42 [t, J = 8.0 Hz, 1H, Ar-H], 7.51 [t, J = 8.0 Hz, 1H, Ar-H]. ¹³C{¹H} NMR (100.63 MHz, CD₂Cl₂): δ 24.16, 24.66, 24.74, 24.76 [CH($CH_3)_2$], 29.60, 30.16 [CH($CH_3)_2$], 71.42 [NCCH₂], 125.00, 125.01, 130.12, 131.30, 133.69, 144.24, 145.83 [Ar-C], 132.52 [NCCH₂]. ¹¹B NMR (C₆D₆, 160.35 MHz): δ For **3**, +30.42 (NBN), -69.52 [CBI₃]; For free BI₃, -8.07; For **1**, +20.21 (NBN); For the unknown species, +25.26, -45.60. Anal. (CALI, Highland Park, NJ) Calcd (found) for **3**: C 36.36 (35.80); H 4.23 (4.25); N 3.26 (3.07).

SUPPORTING INFORMATIONS of COMPUTATIONS

All computations employed the Gaussian09 programs:

For Gaussian 09: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, *Gaussian 09*, revision D.01; Gaussian, Inc., Wallingford CT, 2013.

Center	Atomic	Atomic		rdinates (Ang	gstroms)
Number	Number	Туре	Х	Y	Z
1	5	 0	2.442683	0.273251	-0.010674
2	5	0	-1.442053	-0.016639	-0.007940
3	35	0	4.192891	-0.515245	-0.007055
4	35	0	-1.834886	-1.213335	-1.613118
5	35	0	-1.818714	-0.923223	1.792698
6	35	0	-2.534205	1.699781	-0.147301
7	7	0	1.162639	-0.503284	-0.000372
8	7	0	2.108349	1.615066	-0.024540
9	6	0	0.135209	0.323441	-0.014482
10	6	0	0.657872	1.727460	-0.032018
11	1	0	0.268938	2.274820	0.835093
12	1	0	0.278336	2.247592	-0.919682
13	6	0	2.932841	2.811668	-0.036160
14	1	0	3.983600	2.526119	-0.031638
15	1	0	2.734892	3.409096	-0.930934
16	1	0	2.732419	3.427837	0.845218
17	6	0	1.070128	-1.971035	0.009370
18	1	0	0.248408	-2.280902	0.650316
19	1	0	0.887567	-2.328469	-1.004089
20	1	0	2.011467	-2.370079	0.380064

 Table S1. Coordinates of the B3LYP/6-311G** optimized geometry of 2-Me.

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 5	 0	-2.935026	-0.382629	-0.043086
2	5	0	0.937885	0.004844	-0.011654
3	35	0	-4.709946	0.349665	-0.026256
4	7	0	-1.680426	0.431001	-0.006363
5	7	0	-2.562241	-1.712679	-0.092349
6	6	0	-0.622218	-0.364117	-0.038075
7	6	0	-1.110309	-1.783216	-0.098318
8	1	0	-0.710372	-2.347170	0.752883
9	1	0	-0.717208	-2.267767	-1.000159
10	6	0	-3.349953	-2.932816	-0.142166
11	1	0	-4.408813	-2.679190	-0.133846
12	1	0	-3.130844	-3.497631	-1.053057
13	1	0	-3.133764	-3.567979	0.721811
14	6	0	-1.649206	1.898151	0.046583
15	1	0	-0.863078	2.226946	0.722820
16	1	0	-1.450400	2.294337	-0.949637
17	1	0	-2.616838	2.247409	0.398982
18	53	0	1.380963	1.399046	-1.761993
19	53	0	1.318750	0.939367	2.049812
20	53	0	2.242814	-1.860952	-0.215824

 Table S2. Coordinates of the B3LYP/6-311G** optimized geometry of 3-Me.

SUPPORTING INFORMATIONS of X-RAY

Compound 2

Table S3. Sample and cryst	tal data for 2.		
Identification code	2		
Chemical formula	$C_{26}H_{36}B_2Br_4N_2$		
Formula weight	717.82 g/mol		
Temperature	297(2) K		
Wavelength	0.71073 Å		
Crystal size	0.250 x 0.260 x 0.450 mm		
Crystal system	orthorhombic		
Space group	Pbca (No. 61)		
Unit cell dimensions	a = 19.6037(12) Å	$\alpha = 90^{\circ}$	
	b = 17.1792(11) Å	$\beta = 90^{\circ}$	
	c = 37.549(2) Å	$\gamma = 90^{\circ}$	
Volume	12645.5(14) Å ³		
Ζ	16		
Density (calculated)	1.508 g/cm ³		
Absorption coefficient	5.108 mm ⁻¹		
F(000)	5696		

S7

Table S4. Data collection and stru	ucture refinement for 2	2.	
Theta range for data collection	2.08 to 25.25°		
Index ranges	-22<=h<=23, -18<=k<	<=20, -45<=l<=45	
Reflections collected	107342		
Independent reflections	11448 [R(int) = 0.1521]		
Coverage of independent reflections	99.9%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.7454 and 0.1543		
Structure solution technique	direct methods		
Structure solution program	SHELXS-97 (Sheldrick 2008)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	11448 / 4 / 625		
Goodness-of-fit on F ²	1.010		
Δ/σ_{max}	0.001		
Final R indices	5934 data; I>2σ(I)	R1 = 0.0734, wR2 = 0.1574	
	all data	R1 = 0.1618, $wR2 = 0.1941$	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0744 where P=(F_o^2 +2 F_c^2)/3	P) ² +51.2858P]	
Largest diff. peak and hole	1.955 and -1.494 eÅ-3		
R.M.S. deviation from mean	0.102 eÅ ⁻³		

Table S5. Bond lengths (Å) for 2.

B1-N2	1.359(10)	B1-N1	1.492(10)
B1-Br1	1.888(9)	B2-C1	1.579(11)
B2-Br4	1.963(10)	B2-Br2	2.006(10)
B2-Br3	2.063(10)	N1-C1	1.325(9)
N1-C15	1.466(9)	N2-C3	1.448(9)
N2-C2	1.445(9)	C1-C2	1.493(10)
C2-H2A	0.98(2)	C2-H2B	0.99(2)
C3-C8	1.385(11)	C3-C4	1.403(11)
C4-C5	1.392(12)	C4-C12	1.497(12)
C5-C6	1.364(13)	C6-C7	1.352(13)
C7-C8	1.388(11)	C8-C9	1.505(11)
C9-C11	1.501(12)	C9-C10	1.529(12)
C12-C14	1.501(16)	C12-C13	1.544(15)
C15-C20	1.391(12)	C15-C16	1.394(12)
C16-C17	1.385(12)	C16-C24	1.489(12)
C17-C18	1.372(14)	C18-C19	1.359(15)
C19-C20	1.396(12)	C20-C21	1.497(13)
C21-C23	1.530(15)	C21-C22	1.524(14)
C24-C26	1.498(15)	C24-C25	1.508(15)
B3-N4	1.343(10)	B3-N3	1.488(11)
B3-Br5	1.894(9)	B4-C27	1.600(12)
B4-Br6	1.987(11)	B4-Br8	1.995(11)
B4-Br7	2.058(14)	N3-C27	1.305(9)
N3-C41	1.464(9)	N4-C29	1.452(9)
N4-C28	1.462(9)	C27-C28	1.483(11)
C28-H28B	0.98(2)	C28-H28A	0.99(2)
C29-C30	1.373(11)	C29-C34	1.405(12)
C30-C31	1.381(12)	C30-C38	1.492(12)
C31-C32	1.367(15)	C32-C33	1.348(15)
C33-C34	1.385(12)	C34-C35	1.501(13)
C35-C36	1.515(14)	C35-C37	1.522(16)
C38-C40	1.524(14)	C38-C39	1.534(13)
C41-C46	1.378(12)	C41-C42	1.381(11)
C42-C43	1.395(12)	C42-C50	1.501(13)

C43-C44	1.360(15)	C44-C45	1.352(15)
C45-C46	1.385(13)	C46-C47	1.520(14)
C47-C49	1.538(16)	C47-C48	1.532(14)
C50-C51	1.535(14)	C50-C52	1.531(14)

Table S6. Bond angles (°) for 2.

N2-B1-N1	106.9(7)	N2-B1-Br1	128.9(6)
N1-B1-Br1	124.1(6)	C1-B2-Br4	119.7(6)
C1-B2-Br2	108.7(6)	Br4-B2-Br2	110.4(5)
C1-B2-Br3	99.8(6)	Br4-B2-Br3	109.0(4)
Br2-B2-Br3	108.5(5)	C1-N1-C15	126.2(6)
C1-N1-B1	110.4(6)	C15-N1-B1	123.3(6)
B1-N2-C3	131.5(6)	B1-N2-C2	109.1(6)
C3-N2-C2	119.3(6)	N1-C1-C2	107.1(6)
N1-C1-B2	131.7(7)	C2-C1-B2	121.1(7)
H2A-C2-H2B	101(6)	H2A-C2-N2	113(4)
H2B-C2-N2	115(4)	H2A-C2-C1	111(4)
H2B-C2-C1	112(4)	N2-C2-C1	106.3(6)
C8-C3-C4	123.3(7)	C8-C3-N2	118.6(7)
C4-C3-N2	118.1(7)	C5-C4-C3	115.5(8)
C5-C4-C12	121.9(9)	C3-C4-C12	122.5(7)
C6-C5-C4	122.6(9)	C7-C6-C5	119.5(9)
C6-C7-C8	122.3(9)	C7-C8-C3	116.8(8)
C7-C8-C9	120.5(8)	C3-C8-C9	122.7(7)
C11-C9-C8	112.9(8)	C11-C9-C10	111.3(9)
C8-C9-C10	112.9(7)	C14-C12-C4	111.7(9)
C14-C12-C13	111.2(11)	C4-C12-C13	110.8(10)
C20-C15-C16	124.7(7)	C20-C15-N1	118.5(7)
C16-C15-N1	116.6(7)	C17-C16-C15	115.7(9)
C17-C16-C24	120.1(9)	C15-C16-C24	124.2(7)
C18-C17-C16	121.4(9)	C19-C18-C17	121.2(9)
C18-C19-C20	121.0(10)	C19-C20-C15	116.0(9)
C19-C20-C21	119.9(9)	C15-C20-C21	124.1(8)
C20-C21-C23	111.7(10)	C20-C21-C22	112.9(9)
C23-C21-C22	108.8(9)	C16-C24-C26	113.4(9)
C16-C24-C25	113.5(9)	C26-C24-C25	107.6(10)
N4-B3-N3	108.1(7)	N4-B3-Br5	128.8(7)
N3-B3-Br5	123.2(6)	C27-B4-Br6	117.8(7)
C27-B4-Br8	108.7(7)	Br6-B4-Br8	109.8(6)

C27-B4-Br7	100.7(7)	Br6-B4-Br7	110.8(6)
Br8-B4-Br7	108.5(5)	C27-N3-C41	126.8(6)
C27-N3-B3	109.6(6)	C41-N3-B3	123.3(6)
B3-N4-C29	132.0(6)	B3-N4-C28	108.3(6)
C29-N4-C28	119.4(6)	N3-C27-C28	108.4(6)
N3-C27-B4	132.2(7)	С28-С27-В4	119.3(7)
H28B-C28-H28A	104(6)	H28B-C28-N4	106(4)
H28A-C28-N4	114(4)	H28B-C28-C27	112(4)
H28A-C28-C27	116.(4)	N4-C28-C27	105.4(6)
C30-C29-C34	123.3(8)	C30-C29-N4	119.2(8)
C34-C29-N4	117.4(7)	C31-C30-C29	117.1(9)
C31-C30-C38	120.6(9)	C29-C30-C38	122.3(8)
C30-C31-C32	121.1(10)	C33-C32-C31	120.8(9)
C32-C33-C34	121.5(10)	C33-C34-C29	116.1(9)
C33-C34-C35	120.4(9)	C29-C34-C35	123.5(8)
C34-C35-C36	111.2(9)	C34-C35-C37	113.1(9)
C36-C35-C37	109.9(11)	C30-C38-C40	112.0(9)
C30-C38-C39	112.2(8)	C40-C38-C39	108.7(9)
C46-C41-C42	123.1(8)	C46-C41-N3	115.7(8)
C42-C41-N3	120.9(8)	C43-C42-C41	117.3(9)
C43-C42-C50	120.1(9)	C41-C42-C50	122.7(8)
C44-C43-C42	120.3(10)	C45-C44-C43	121.1(10)
C44-C45-C46	121.3(11)	C45-C46-C41	116.9(10)
C45-C46-C47	120.0(10)	C41-C46-C47	123.0(8)
C46-C47-C49	111.6(9)	C46-C47-C48	113.2(11)
C49-C47-C48	112.0(11)	C42-C50-C51	110.5(9)
C42-C50-C52	112.7(9)	C51-C50-C52	110.1(9)

Compound 3

Table S7. Sample and crystal data for 3.			
Identification code	3		
Chemical formula	$C_{26}H_{36}B_2BrI_3N_2$		
Formula weight	858.80 g/mol		
Temperature	297(2) K		
Wavelength	0.71073 Å		
Crystal size	0.150 x 0.210 x 0.400 mm		
Crystal system	orthorhombic		
Space group	P2 ₁ 2 ₁ 2 ₁ (No. 19)		
Unit cell dimensions	a = 12.2369(6) Å	$\alpha = 90^{\circ}$	
	b = 14.6825(7) Å	$\beta = 90^{\circ}$	
	c = 18.0610(8) Å	$\gamma = 90^{\circ}$	
Volume	3245.0(3) Å ³		
Z	4		
Density (calculated)	1.758 g/cm ³		
Absorption coefficient	4.137 mm ⁻¹		
F(000)	1640		

Table S8. Data collection and structure refinement for 3.			
Theta range for data collection	2.01 to 27.88°		
Index ranges	-16<=h<=16, -19<=k<=19, -23<=l<=23		
Reflections collected	104369		
Independent reflections	7743 [R(int) = 0.0503]		
Max. and min. transmission	0.7457 and 0.2577		
Structure solution technique	direct methods		
Structure solution program	SHELXS-97 (Sheldrick 2008)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)		
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$		
Data / restraints / parameters	7743 / 0 / 308		
Goodness-of-fit on F ²	1.072		
Δ/σ_{max}	0.001		
Final R indices	6716 data; R1 = 0.0378, wR2 = 0.0925 $I > 2\sigma(I)$		
	all data $R1 = 0.0471$, $wR2 = 0.0982$		
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0485P) ² +3.1668P] where P=(F_o^2 +2 F_c^2)/3		
Absolute structure parameter	0.052(17)		
Largest diff. peak and hole	0.851 and -1.603 eÅ ⁻³		
R.M.S. deviation from mean	0.142 eÅ ⁻³		

Table S9. Bond lengths (Å) for 3.

B1-N2	1.342(8)	B1-N1	1.503(7)
B1-Br1	1.899(6)	B2-C1	1.615(9)
B2-I1	2.200(8)	B2-I2	2.229(8)
B2-I3	2.265(8)	N1-C1	1.311(8)
N1-C15	1.446(7)	N2-C3	1.443(7)
N2-C2	1.461(8)	C1-C2	1.491(8)
C3-C8	1.382(9)	C3-C4	1.406(10)
C4-C5	1.373(10)	C4-C12	1.536(11)
C5-C6	1.359(12)	C6-C7	1.369(12)
C7-C8	1.391(8)	C8-C9	1.513(10)
C9-C11	1.524(13)	C9-C10	1.493(13)
C12-C13	1.503(15)	C12-C14	1.526(14)
C15-C16	1.395(8)	C15-C20	1.404(8)
C16-C17	1.387(10)	C16-C24	1.512(11)
C17-C18	1.378(13)	C18-C19	1.358(12)
C19-C20	1.372(10)	C20-C21	1.519(10)
C21-C22	1.509(13)	C21-C23	1.532(13)
C24-C26	1.522(17)	C24-C25	1.56(2)

Table S10. Bond angles (°) for 3.

N2-B1-N1	107.7(5)	N2-B1-Br1	128.7(4)
N1-B1-Br1	123.6(4)	C1-B2-I1	120.7(5)
C1-B2-I2	105.1(5)	I1-B2-I2	108.5(3)
C1-B2-I3	103.4(4)	I1-B2-I3	108.2(3)
I2-B2-I3	110.7(3)	C1-N1-C15	128.3(5)
C1-N1-B1	109.4(5)	C15-N1-B1	122.2(5)
B1-N2-C3	131.8(5)	B1-N2-C2	109.0(5)
C3-N2-C2	119.2(5)	N1-C1-C2	108.4(5)
N1-C1-B2	131.7(5)	C2-C1-B2	119.9(5)
N2-C2-C1	105.3(5)	C8-C3-C4	122.4(5)
C8-C3-N2	119.1(5)	C4-C3-N2	118.5(5)
C5-C4-C3	117.2(6)	C5-C4-C12	121.0(7)
C3-C4-C12	121.8(6)	C6-C5-C4	121.9(7)
C5-C6-C7	119.8(7)	C8-C7-C6	121.7(7)
C3-C8-C7	116.9(6)	C3-C8-C9	123.8(5)
C7-C8-C9	119.3(6)	C8-C9-C11	111.2(6)
C8-C9-C10	112.7(7)	C11-C9-C10	109.0(9)
C4-C12-C13	110.6(7)	C4-C12-C14	111.2(8)
C13-C12-C14	112.6(10)	C16-C15-C20	123.5(6)
C16-C15-N1	118.2(5)	C20-C15-N1	118.1(5)
C17-C16-C15	116.4(6)	C17-C16-C24	120.7(7)
C15-C16-C24	122.9(6)	C18-C17-C16	121.1(7)
C19-C18-C17	120.4(7)	C20-C19-C18	122.3(7)
C19-C20-C15	116.2(6)	C19-C20-C21	121.2(6)
C15-C20-C21	122.5(6)	C22-C21-C20	113.3(8)
C22-C21-C23	109.7(8)	C20-C21-C23	110.3(6)
C16-C24-C26	111.0(9)	C16-C24-C25	108.1(11)
C26-C24-C25	111.2(10)		

Compound 4

Table S11. Sample and c	rystal data for 4.		
Identification code	4		
Chemical formula	$C_{26}H_{37}B_2Br_5N_2$		
Formula weight	798.74 g/mol		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal size	0.180 x 0.300 x 0.400 mm		
Crystal system	monoclinic		
Space group	$P2_1/c$ (No. 14)		
Unit cell dimensions	a = 12.317(2) Å	$\alpha = 90^{\circ}$	
	b = 22.811(5) Å	$\beta = 109.718(6)^{\circ}$	
	c = 14.606(3) Å	$\gamma = 90^{\circ}$	
Volume	3863.3(13) Å ³		
Z	4		
Density (calculated)	1.373 g/cm ³		
Absorption coefficient	5.216 mm ⁻¹		
F(000)	1568		

Theta range for data collection	2.08 to 26.02°		
Index ranges	-15<=h<=15, -28<=k<=28, -18<=l<=18		
Reflections collected	118311		
Independent reflections	7600 [R(int) = 0.0999]		
Coverage of independent reflections	99.9%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.7454 and 0.2455		
Structure solution technique	direct methods		
Structure solution program	SHELXS-97 (Sheldrick 2008)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	7600 / 3 / 329		
Goodness-of-fit on F ²	1.023		
Δ/σ_{max}	0.001		
Final R indices	6114 data; I>2σ(I)	R1 = 0.0390, wR2 = 0.0836	
	all data	R1 = 0.0534, $wR2 = 0.0884$	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0332P) ² +7.0875P] where P=(F_o^2 +2 F_c^2)/3		
Largest diff. peak and hole	0.960 and -0.950 eÅ ⁻³		
R.M.S. deviation from mean	0.089 eÅ ⁻³		

Table S12. Data collection and structure refinement for 4.

Table S13. Bond lengths (Å) for 4.

B1-N1	1.403(5)	B1-N2	1.475(5)
B1-Br1	1.882(4)	B2-Br5	2.003(4)
B2-Br4	2.017(4)	B2-Br3	2.007(4)
B2-Br2	2.024(4)	N1-C1	1.419(4)
N1-C15	1.450(4)	N2-C2	1.344(4)
N2-C3	1.460(4)	C1-H1A	0.974(19)
C1-H1B	0.996(19)	C1-C2	1.470(5)
С2-Н2	0.946(19)	C3-C4	1.393(5)
C3-C8	1.400(5)	C4-C5	1.399(5)
C4-C12	1.510(6)	C5-C6	1.369(6)
C6-C7	1.384(6)	C7-C8	1.389(5)
C8-C9	1.520(6)	C9-C10	1.523(5)
C9-C11	1.534(6)	C12-C14	1.540(6)
C12-C13	1.526(6)	C15-C16	1.406(5)
C15-C20	1.392(5)	C16-C17	1.385(6)
C16-C24	1.536(6)	C17-C18	1.368(6)
C18-C19	1.377(6)	C19-C20	1.396(5)
C20-C21	1.511(5)	C21-C23	1.519(6)
C21-C22	1.545(6)	C24-C26	1.531(7)
C24-C25	1.540(8)		

N1-B1-N2	106.0(3)	N1-B1-Br1	128.0(3)
N2-B1-Br1	126.0(3)	Br5-B2-Br4	110.1(2)
Br5-B2-Br3	110.75(19)	Br4-B2-Br3	109.3(2)
Br5-B2-Br2	107.95(19)	Br4-B2-Br2	109.23(19)
Br3-B2-Br2	109.4(2)	B1-N1-C1	110.1(3)
B1-N1-C15	129.1(3)	C1-N1-C15	120.8(3)
C2-N2-C3	123.3(3)	C2-N2-B1	108.8(3)
C3-N2-B1	127.9(3)	H1A-C1-H1B	89(4)
H1A-C1-N1	121(3)	H1B-C1-N1	114(3)
H1A-C1-C2	115(3)	H1B-C1-C2	111(3)
N1-C1-C2	105.4(3)	H2-C2-N2	117(3)
H2-C2-C1	133.(3)	N2-C2-C1	109.5(3)
C4-C3-C8	124.3(3)	C4-C3-N2	117.9(3)
C8-C3-N2	117.8(3)	C5-C4-C3	116.6(4)
C5-C4-C12	120.2(4)	C3-C4-C12	123.3(3)
C6-C5-C4	120.7(4)	C5-C6-C7	121.1(4)
C6-C7-C8	121.1(4)	C3-C8-C7	116.2(4)
C3-C8-C9	122.9(3)	C7-C8-C9	120.9(4)
C10-C9-C8	112.9(3)	C10-C9-C11	110.2(4)
C8-C9-C11	110.8(3)	C14-C12-C4	110.4(4)
C14-C12-C13	110.3(3)	C4-C12-C13	111.5(3)
C16-C15-C20	123.1(3)	C16-C15-N1	118.4(3)
C20-C15-N1	118.5(3)	C15-C16-C17	117.1(4)
C15-C16-C24	122.4(3)	C17-C16-C24	120.4(4)
C18-C17-C16	121.3(4)	C17-C18-C19	120.5(4)
C20-C19-C18	121.3(4)	C19-C20-C15	116.7(3)
C19-C20-C21	120.1(3)	C15-C20-C21	123.2(3)
C23-C21-C20	111.7(4)	C23-C21-C22	111.0(3)
C20-C21-C22	110.3(3)	C16-C24-C26	110.2(4)
C16-C24-C25	110.7(4)	C26-C24-C25	111.3(4)