Supporting Information

The Synthesis of LA-Fe₃O₄@PDA-PEG-DOX for Photothermal-Chemotherapy Therapy

Yuhua Chen, Huiming Lin,* Feng Zhang, Qian Wang, Ruihan Tong, Na An, and Fengyu Qu*

Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China

Scheme S1. Schematic illustration of the reaction process of mPEG-NH₂ with Fe₃O₄@PDAs.

Scheme S2. Schematic illustration of the different direction of the applied magnetic field.

Figure S1. The large angle XRD patterns of Fe₃O₄, Fe₃O₄@PDA3.

Figure S2. The digital photos of (a) Fe_3O_4 , (b) Fe_3O_4 @PDA3, (c) Fe_3O_4 @PDA3-PEG solutions in PBS.

Figure S3. TEM images of PDA.

Figure S4. The fluorescence spectra of DOX and LA-Fe₃O₄@PDA-PEG-DOX under 480 nm excitation.

DOX reveals red fluorescence at 600-680 nm excited by 480 nm. However, the obvious fluorescence quenching fLA-Fe₃O₄@PDA-PEG-DOX is derived from the strong π - π stacking fDOX and PDA.

Figure S5. TEM images of LA-Fe₃O₄@PDA3-PEG-DOX uptake by HepG2 cells.

TEM images show the remarkedly endocytosed vesicles about 300-1000 nm suggesting that uptake of LA-Fe₃O₄@PDA3-PEG-DOX was mainly through endocytosis and macropinocytosis.

Figure S6. Flow cytometry analysis of the HepG2 cells incubated with FITC modified LA-Fe₃O₄@PDA3-PEG-DOX+NIR (808 nm 1 W cm⁻² 30 min) under different direction of magnetic field (a: without, b: top, c: side, d: bottom).