A Pair of Polymorphous Metal-Organic Frameworks Based on an Angular Diisophthalate Linker: Synthesis, Characterization and Gas Adsorption Property

Fengli Chen, Dongjie Bai, Yao Wang, Minghui He, Xiaoxia Gao, and Yabing He* Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China. E-mail: heyabing@zjnu.cn.

Fig. S1 The photographs of the as-synthesized (a) ZJNU-77 and (b) ZJNU-78.

Fig. S2 Comparison of the experimental (red) and simulated (black) PXRD patterns for (a) **ZJNU-77** and (b) **ZJNU-78**.

Fig. S3 TGA curves of the as-synthesized (a) ZJNU-77 and (c) ZJNU-78 under nitrogen atmosphere.

Fig. S4 Comparison of FTIR spectra of the organic linker and its corresponding MOFs

 $S_{\text{BET}} = \frac{1}{(9.68079 \times 10^{-6} + 0.00178)} + 22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2432 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = \frac{(1}{0.00128}) + 22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 3401 \text{ m}^2 \text{ g}^{-1}$ BET constant $C = 1 + 0.00178 + 9.68079 \times 10^{-6} = 185$

$$(P/P_o)_{n_m} = \frac{1}{\sqrt{C}+1} = 0.0685$$

Fig. S5 The consistency plot (a), BET plot (b) and Langmuir plot (c) for ZJNU-77.

NOTE: For BET surface area calculation, a set of consistency criteria should comply with: (a) $V_{ads}(1-P/P_o)$ increases continuously as a function of P/P_o ; (2) the value of the BET constant *C* should be positive and have a value of at least 10; (3) the relative pressure corresponding to a given monolayer should be located within the chosen relative pressure range.

 $S_{\text{BET}} = 1/(6.8215 \times 10^{-7} + 0.00332)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 1311 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = (1/0.00299)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 1456 \text{ m}^2 \text{ g}^{-1}$ BET constant = 1 + 0.00332/6.8215 × 10⁻⁷ = 4868

$$(P/P_o)_{n_m} = \frac{1}{\sqrt{C}+1} = 0.01413$$

Fig. S6 The consistency plot (a), BET plot (b) and Langmuir plot (c) for ZJNU-78.

Fig. S7 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-77** with the fitted isotherms (shown by continuous solid lines) at 278 K, 288 K and 298 K.

Fig. S8 IAST selectivities for the equimolar (a) C_2H_2/CH_4 and (b) CO_2/CH_4 gas mixtures in ZJNU-77 at three different temperatures of 278 K, 288 K and 298 K.

Fig. S9 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-78** with the fitted isotherms (shown by continuous solid lines) at 278 K, 288 K and 298 K.

Fig. S10 IAST selectivities for the equimolar (a) C_2H_2/CH_4 and (b) CO_2/CH_4 gas mixtures in ZJNU-78 at three different temperatures of 278 K, 288 K and 298 K.

Fig. S11 The isosteric heat of C_2H_2 , CO_2 and CH_4 adsorption in ZJNU-77 (black) and ZJNU-78 (red) as a function of gas loadings.

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 ppm

Fig. S12 ¹H NMR and ¹³C NMR spectra

MOFs	ZJNU-77	ZJNU-78	
Empirical formula	$C_{26}H_{16}O_{10}Cu_2$	$C_{78}H_{48}O_{30}Cu_6$	
Formula weight	615.47	1846.40	
λ (Å)	0.71073	0.71073	
Crystal system	Cubic	Tetragonal	
Space group	Fm-3m	P4 ₂ /mnm	
	a = 39.8231(14) Å	a = 28.36750(10) Å	
	<i>b</i> = 39.8231(14) Å	<i>b</i> = 28.36750(10) Å	
Unit cell dimensions	c = 39.8231(14)Å	c = 28.6376(2) Å	
Chit cell dimensions	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	
	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$	
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	
$V(\text{\AA}^3)$	63155(4)	23045.1(2)	
Ζ	48	8	
$D_{\rm c} ({\rm g cm}^{-3})$	0.777	1.064	
$\mu (\mathrm{mm}^{-1})$	0.836	1.145	
<i>F</i> (000)	14880	7440	
Crystal size (mm)	$0.13 \times 0.12 \times 0.09$	0.23 ×0.18 ×0.12	
θ range for data collection (°)	1.70 to 25.01	1.61 to 26.40	
	$-45 \le h \le 37$	$-24 \le h \le 35$	
Limiting indices	$-47 \le k \le 37$	$-35 \le k \le 33$	
	$-46 \le l \le 43$	$-35 \le l \le 35$	
Reflections collected / unique	39677 / 2759	202235 / 12372	
R _{int}	0.0839	0.0218	
Max. and min. transmission	0.9286 and 0.8991	0.8748 and 0.7787	
Refinement method	Full-matrix least-squares on	Full-matrix least-squares on	
	F^2	F^2	
Data/restraints/parameters	2759 / 30 / 118	12372 / 0 / 535	
Goodness-of-fit on F^2	1.426	1.080	
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0783$	$R_1 = 0.0511$	
	$wR_2 = 0.2182$	$wR_2 = 0.1654$	
Dindiana (all data)	$R_1 = 0.1098$	$R_1 = 0.0524$	
k indices (all data)	$wR_2 = 0.2296$	$wR_2 = 0.1677$	
Largest diff. peak and hole $(e.Å^{-3})$	0.598 and -0.704	2.959 and -0.553	
CCDC	1582889	1582890	

 Table S1 Crystal data and structure refinement for ZJNU-77-78.

Table S2 Langmuir-Freundich parameters for adsorption of C_2H_2 , CO_2 , and CH_4 in ZJNU-77

	$q_{\rm sat}$ (mmol g ⁻¹)	b_0 (kPa) ^{-v}	E (kJ mol ⁻¹)	v
C_2H_2	14.24915	5.66836×10 ⁻⁵	15.976	0.60723
CO ₂	11.80214	5.05081×10 ⁻⁷	22.211	1
CH ₄	8.25222	2.59306×10 ⁻⁶	14.850	1

Table S3 Langmuir-Freundich parameters for adsorption of C_2H_2 , CO_2 , and CH_4 in ZJNU-78

	$q_{\rm sat}$ (mmol g ⁻¹)	b_0 (kPa) ^{-v}	E (kJ mol ⁻¹)	v
C_2H_2	8.85937	1.07128×10 ⁻⁶	26.094	0.80202
CO ₂	12.50058	2.24056×10 ⁻⁷	24.169	1
CH ₄	6.80442	6.33649×10 ⁻⁷	18.960	1