Redox responsive UCNPs-DPA conjugated NGO-PEG-BPEI for cancer theranostic

Arif Gulzar,^{*a} Jiating Xu,^a Liangge Xu,^a Shili Gai,^{*a} Piaoping Yang,^{*a} Fei He,^a Dan Yang,^a Guanghui An,^a Mohd Bismillah Ansari^b

^aKey Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China

^bSaudi Basic Industries Kingdom of Saudi Arabia

Fig. S1 XRD pattern of UCNPs. The standard pattern of hexagonal phases NaGdF₄:Yb³⁺, Er^{3+} @NaGdF₄ is given for reference (JCPDS No.27-0699).

Fig. S2 FT-IR spectra of NGO-PEG and NGO. The strong stretching vibration peak of C–H (\sim 2880 cm⁻¹) demonstrated the presence of PEG in the NGO-PEG. The appearance of the new absorption at \sim 1649 cm⁻¹ for –CONH– further indicated that PEG has been covalently boned on the surface of NGO successfully.

Fig. S3 Temperature variation curves of the NGO-PEG solution subjected to the 980 nm laser at a power density of 0.72 W/cm².

Fig. S4 LSUCLM images of HeLa cells when incubating with UCNPs-DPA-NGO-PEG-BPEI-DOX for 0.5 h, 1 h, and 3 h.

Fig. S5 Hemolytic assay of UCNPs-DPA-NGO-PEG-BPEI-DOX by human red blood cells.

Fig. S6 (A) The photothermal response of the UCNPs-DPA-NGO-PEG-BPEI-DOX aqueous solution (200 μ g/ mL) radiated with 980 nm laser (0.72 W/cm²) and then the laser was shut off. (B) Linear time data *versus* –ln θ obtained from the cooling period of Fig. S6A. (C) Temperature change of UCNPs-DPA-NGO-PEG-BPEI-DOX under three irradiation/cooling cycles (0.72 W/cm²).