Supporting Information - Combining the platinum(II) drug candidate

kiteplatin with 1,10-phenanthroline analogues

Benjamin J. Pages,^a Jennette Sakoff,^b Jayne Gilbert,^b Yingjie Zhang,^c James D. Hoeschele,^d Sharon M. Kelly,^e and Janice R. Aldrich-Wright.^{*a}

^a Nanoscale Organisation and Dynamics Group, Western Sydney University, Campbelltown, NSW 2560, Australia

^b Calvary Mater Newcastle, Waratah, NSW 2298, Australia

^c Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia

^d Department of Chemistry, Eastern Michigan University, Ypsilanti, MI 48197, USA

^e Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G128QQ, United Kingdom.

Table of Contents

Section S1 – UV Spectra	1
Section S2 – NMR Spectra	3
S2.1. ¹ H Spectra	3
S2.2. ¹ H- ¹⁹⁵ Pt HMQC spectra	4
Section S3 – ITC Data	5

Section S1 - UV Spectra

Figure S1.2. Standard absorbance plot of complex 2, obtained from the titration of the complex into water. Inset: the absorbance spectra recorded over the course of titrations.

Figure S1.2. Standard absorbance plot of complex 3, obtained from the titration of the complex into water. Inset: the absorbance spectra recorded over the course of titrations.

Section S2 – NMR Spectra

S2.1. ¹H Spectra

Figure S2.1.1. The ¹H NMR spectrum of Complex 1 in D₂O, showing proton labels.

Figure S2.1.2. The ¹H NMR spectrum of Complex 2 in D₂O, showing proton labels.

Figure S2.2.1. The ${}^{1}\text{H}{}^{-195}\text{Pt}$ HMQC spectrum of complex 1 in D₂O, showing cross-peaks.

Figure S2.2.2. The ¹H-¹⁹⁵Pt HMQC spectrum of complex 2 in DMSO-d₆, showing cross-peaks.

Figure S3.1. ITC trace and binding curve of the titration of PHENKITE or complex 1 (750 μM) into CT-DNA (160 μM). Fits were obtained using a one-site binding model.

Figure S3.2. ITC trace and binding curve of the titration of 5KITE or complex **2** (600 μ M) into CT-DNA (160 μ M). Fits were obtained using a one-site binding model.

Molar Ratio

Figure S3.3. ITC trace and binding curve of the titration of 5MESS chloride or complex 5 (600 μ M) into CT-DNA (160 μ M). Fits were obtained using a one-site binding model.

Figure S3.4. ITC trace and binding curve of the titration of 5MESS nitrate or complex **5a** (600 μ M) into CT-DNA (160 μ M). Fits were obtained using a one-site binding model.