Electronic Supplementary Information (ESI) for Journal of Dalton Transactions This journal is © The Royal Society of Chemistry 2017

SUPPORTING INFORMATION

<u>**Title:**</u> Effect of Functional Groups in Aqueous-Phase Selective Sensing of Fe(III) Ions by Thienothiophene-Based Zirconium Metal-Organic Frameworks and its application in logic gate

Author(s): Rana Dalapati, Ülkü Kökçam-Demir, Christoph Janiak, and Shyam Biswas*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India

Institut für Anorganische Chemie und Strukturchemie, Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany

* To whom correspondence should be addressed. E-mail: sbiswas@iitg.ernet.in; Tel: 91-3612583309.

Figure S1. FT-IR spectra of as-synthesized and activated 1.

Figure S2. FT-IR spectra of as-synthesized and activated 3.

Figure S3. FT-IR spectra of as-synthesized and activated 4.

Tal	ole S1. Latt	ice pa	ramete	ers of	fas	-synthesiz	zed 1, 3 an	d 4 having cul	bic unit cells.	The values
are	compared	with	those	of t	he	formerly	reported,	isostructural,	dimethyl-fun	ctionalized
Zr(IV)-based c	ompo	und.							

Compound	<i>a</i> (Å)	$V(\text{\AA}^3)$
1	23.0145(3)	12,190.0(7)
3	23.1153(3)	12,350.9(5)
4	22.9783(7)	12,132.6(12)
$\left[\mathrm{Zr}_{6}\mathrm{O}_{4}(\mathrm{OH})_{4}(\mathrm{DMTDC})_{6}\right]^{[1]}$	23.0917(6)	12,313.1(3)
Zr-DMTDC ^[2]	23.12	12,358.43

Figure S4. TG curves of **1** and **1'** recorded in an air atmosphere in the temperature range of 25-700 °C with a heating rate of 5 °C min⁻¹.

Figure S5. TG curves of **3** and **3'** recorded in an air atmosphere in the temperature range of 25-700 °C with a heating rate of 5 °C min⁻¹.

Figure S6. TG curves of **4** and **4'** recorded in an air atmosphere in the temperature range of 25-700 $^{\circ}$ C with a heating rate of 5 $^{\circ}$ C min⁻¹.

Table	S2.	Weight	loss	steps	in	the	TG	curves	of	as-synthesized	1,	3	and	4,	and	their
assignr	nent	s.														

Compound	First Weight	No. of H ₂ O	Second Weight	No. of DMF
	Loss (%):	Molecules	Loss (%):	Molecules
	Obs. / Cal.	Removed in	Obs. / Cal.	Removed in
		First Weight		Second Weight
		Loss Step		Loss Step
as-synthesized 1	13.1 / 13.3	18	3.1 / 2.9	1
as-synthesized 3	11.7 / 11.6	21	8.9 / 9.0	4
as-synthesized 4	6 / 5.9	11	5.5/ 5.4	2.5

Figure S7. XRPD patterns of 1' in different forms: as-synthesized, activated, treated with water, treated with 1M HCl and treated at pH 11.

Figure S8. XRPD patterns of 3' in different forms: as-synthesized, activated, treated with water, treated with 1M HCl and treated at pH 11.

Figure S9. XRPD patterns of 4' in different forms: as-synthesized, activated, treated with water, treated with 1M HCl and treated at pH 11.

Figure S10. (a) UV-Vis spectra of the supernatants after stirring 1' in different liquids. (b) UV-Vis spectra of free H_2 TDC ligand in different liquids.

Figure S11. (a) UV-Vis spectra of the supernatants after stirring **3'** in different liquids. (b) UV-Vis spectra of free H_2MPTDC ligand in different liquids.

Figure S12. (a) UV-Vis spectra of the supernatants after stirring 4' in different liquids. (b) UV-Vis spectra of free H_2DPTDC ligand in different liquids.

Figure S13. Diffuse reflectance UV-visible absorption spectra of H₂TDC ligand and 1'.

Figure S14. Diffuse reflectance UV-visible absorption spectra of H₂DMTDC ligand and 2'.

Figure S15. Diffuse reflectance UV-visible absorption spectra of H₂MPTDC ligand and 3'.

Figure S16. Diffuse reflectance UV-visible absorption spectra of H_2DPTDC ligand and 4'.

Figure S17. Tauc plot for H₂TDC ligand and 1'.

Figure S18. Tauc plot for H₂DMTDC ligand and 2'.

Figure S19. Tauc plot for H₂MPTDC ligand and 3'.

Figure S20. Tauc plot for H₂DPTDC ligand and 4'.

Figure S21. Solid-state fluorescence emission spectra of H₂TDC ligand and 1' recorded at room temperature ($\lambda_{ex} = 260 \text{ nm}$).

Figure S22. Solid-state fluorescence emission spectra of H₂DMTDC ligand and **2'** recorded at room temperature ($\lambda_{ex} = 260$ nm).

Figure S23. Solid-state fluorescence emission spectra of H₂MPTDC ligand and 3' recorded at room temperature ($\lambda_{ex} = 260 \text{ nm}$).

Figure S24. Solid-state fluorescence emission spectra of H₂DPTDC ligand and **4'** recorded at room temperature ($\lambda_{ex} = 260 \text{ nm}$).

Figure S25. Water sorption isotherm of 1' measured at 20 °C. Inset shows advancing water contact angle for 1'.

Figure S26. Water sorption isotherm of 2' at 20 °C. Inset shows advancing water contact angle for 2'.

Figure S27. Water sorption isotherm of 3' at 20 °C. Inset shows advancing water contact angle for 3'.

Figure S28. Water sorption isotherm of 4' at 20°C. Inset shows advancing water contact angle for 4'.

Figure S29. XRPD patterns of (a) 1', (b) 2', (c) 3' and (d) 4' before and after the water sorption measurements.

Figure S30. Change in the fluorescence intensity of 1' upon addition of 10 mM solutions (500 μ L) of different metal ions.

Figure S31. Change in the fluorescence intensity of 2' upon addition of 10 mM solutions (500 μ L) of different metal ions.

Figure S32. Change in the fluorescence intensity of 3' upon addition of 10 mM solutions (500 μ L) of different metal ions.

Figure S33. Change in the fluorescence intensity of 4' upon addition of 10 mM solutions (500 μ L) of different metal ions.

Figure S34. Change in the fluorescence intensity of 1' upon addition of 10 mM solutions (500 μ L) of different metal ions in presence of Fe³⁺ ion.

Figure S35. Change in the fluorescence intensity of **2'** upon addition of 10 mM solutions (500 μ L) of different metal ions in presence of Fe³⁺ ion.

Figure S36. Change in the fluorescence intensity of **3'** upon addition of 10 mM solutions (500 μ L) of different metal ions in presence of Fe³⁺ ion.

Figure S37. Change in the fluorescence intensity of **4'** upon addition of 10 mM solutions (500 μ L) of different metal ions in presence of Fe³⁺ ion.

Figure S38. Stern-Volmer plot for the fluorescence quenching of 1' in presence of Fe^{3+} in aqueous solution.

Figure S39. Stern-Volmer plot for the fluorescence quenching of 2' in presence of Fe³⁺ in aqueous solution.

Figure S40. Stern-Volmer plot for the fluorescence quenching of 3' in presence of Fe³⁺ in aqueous solution.

Figure S41. Stern-Volmer plot for the fluorescence quenching of **4'** in presence of Fe^{3+} in aqueous solution.

Figure S42. Change in the fluorescence intensity of 1' in aqueous solution as a function of Fe³⁺ concentration.

Figure S43. Change in the fluorescence intensity of 2' in aqueous solution as a function of Fe³⁺ concentration.

Figure S44. Change in the fluorescence intensity of 3' in aqueous solution as a function of Fe³⁺ concentration.

Figure S45. Change in the fluorescence intensity of 4' in aqueous solution as a function of Fe^{3+} concentration.

Table S3. A comparison of the	Stern-Volmer constant	t (K_{sv}), detection limi	t and medium used
for Fe ³⁺ detection for MOFs rep	ported till date.		

01	105	**	D	3 6 11	D (
SI.	MOF	$K_{\rm sv}$	Detection	Medium	Ret.
No		$(\times 10^4)$	Limit	Used	
110.			Linnt	Useu	
		M ¹)			
1	$[Zr_{\epsilon}O_{4}(OH)_{4}(C_{2}H_{2}O_{4}S_{2})_{\epsilon}]\cdot DME$	0.44	1.26×10^{-6} M	Water	This work
1		0	1.20//10 1/1	() alor	THIS WORK
	184.0				
	101120				
2		0.00	0.57.10-7.16	***	751 1
2	$[Zr_6O_4(OH)_4(C_{10}H_6O_4S_2)_6]$ ·4.8DMF·	0.88	8.57×10 [°] M	Water	This work
	10H ₂ O				
	-				
3	$[7r_{c}O_{4}(OH)_{4}(C_{1}+O_{4}S_{0})_{c}]\cdot 4DME$	1.07	9.33×10^{-7} M	Water	This work
5	[21604(011)4(015180452)6] +D101	1.07	7.55×10 IVI	water	
	$21H_2O$				
4	$[Zr_6O_4(OH)_4 (C_{20}H_{10}O_4S_2)_6] \cdot 2.5DMF \cdot$	0.91	3.4×10^{-7} M	Water	This work
	111120				
-		1.0.0		T-1 1	[0]
6	$[La(TPT)(DMSO)_2] \cdot H_2O$	1.36	-	Ethanol	[3]
7	$[H(H_2O)_8][DvZn_4(imdc)_4(im)_4]$	2.88	-	DMSO	[4]
-	[(2)0][r.1
Q	EuL.	0.41	10^{-4} M	Ethonol	[5]
0	LuL ₃	0.41	10 101	Ethanoi	[2]
0			2.2.1077.15	DIG	[[]
9	$[Eu_2(MFDA)_2(HCOO)_2(H_2O)_6] \cdot H_2O$	-	3.3×10 ′ M	DMF	[6]

10	$[Cd(H_2L_a)_{0.5}(H_2L_b)_{0.5}(H_2O)]$	-	$10^{-5} \mathrm{M}$	Water	[7]
11	$[(CH_3)_2NH_2] \cdot [Tb(bptc)] \cdot x$ solvents	-	72.76 ppm	Ethanol	[8]
12	$[Ln_2(Ccbp)_3 \cdot 6H_2O] \cdot 3Cl^- \cdot 4H_2O$	11.43	-	Ethanol	[9]
13	Eu ³⁺ @MIL-124	3.87	$0.28 \times 10^{-6} \mathrm{M}$	Water	[10]
14	MIL-53(Al)	-	0.9×10 ⁻⁶ M	PBS buffer	[11]
15	$[Ln(Hpzbc)_2(NO_3)] \cdot H_2O$	-	$2.6 \times 10^{-5} \mathrm{M}$	Ethanol	[12]
16	$[Tb(BTB)(DMF)] \cdot 1.5DMF \cdot 2.5H_2O$	-	10 ⁻⁵ M	Ethanol	[13]
17	$[Tb_4(OH)_4(DSOA)_2(H_2O)_8] \cdot (H_2O)_8$	3.5	-	Water	[14]
18	Tb ³⁺ @Cd-MOF	11.08	0.010 mM	DMF	[15]

Figure S46. Reproducibility of the quenching efficiency of the aqueous suspension of 1' in aqueous solution towards 10 mM Fe^{3+} solution.

Figure S47. Reproducibility of the quenching efficiency of the aqueous suspension of 2' in aqueous solution towards 10 mM Fe³⁺ solution.

Figure S48. Reproducibility of the quenching efficiency of the aqueous suspension of 3' in aqueous solution towards 10 mM Fe³⁺ solution.

Figure S49. Reproducibility of the quenching efficiency of the aqueous suspension of 4' in aqueous solution towards 10 mM Fe^{3+} solution.

Figure S50. XRPD patterns of 1' before and after the Fe^{3+} sensing experiment.

Figure S51. XRPD patterns of 2' before and after the Fe³⁺ sensing experiment.

Figure S52. XRPD patterns of **3'** before and after the Fe^{3+} sensing experiment.

Figure S53. XRPD patterns of **4'** before and after the Fe^{3+} sensing experiment.

Figure S54. Effect of pH on fluorescence quenching.

									Spec	trum 2:
0.00	0									
0	2	4	6	8	10	12	14	16	18	20
Full Sca	ale 20301	cts Curso	or: 0.000							keV

Figure 55. EDX spectrum of 1' recovered after the Fe^{3+} sensing experiment.

Figure S56. EDX spectrum of **2'** recovered after the Fe^{3+} sensing experiment.

Figure S57. EDX spectrum of **3'** recovered after the Fe^{3+} sensing experiment.

Figure S58. EDX spectrum of **4'** recovered after the Fe^{3+} sensing experiment.

Figure S59. Change in the fluorescence intensity of 1' in presence of 10 mM MVI₂ (500 μ L).

Figure S60. Change in the fluorescence intensity of 2' in presence of 10 mM MVI_2 (500 μ L).

Figure S61. Change in the fluorescence intensity of 3' in presence of 10 mM MVI₂ (500 µL).

Figure S62. Change in the fluorescence intensity of 4' in presence of 10 mM MVI₂ (500 μ L).

Figure S63. Lifetime decay profile of 1' in presence of aqueous Fe^{3+} solution ($\lambda_{ex} = 290$ nm, monitored at 400 nm).

Figure S64. Lifetime decay profile of **1'** in presence of aqueous MVI₂ solution ($\lambda_{ex} = 290$ nm, monitored at 400 nm).

Table S4. Excited-state lifetime analysis of 1' in presence of Fe³⁺ aqueous solution ($\lambda_{ex} = 290$ nm, $\lambda_{em} = 400$ nm).

Volume of		τ (ns)			а		Average	χ^2
analyte	τ_1 (ns)	τ_2 (ns)	τ_3 (ns)	a_1	a_2	a ₃	lifetime (ns)	
added							<τ>*	
0	16.56	1.72	0.13	0.35	0.09	0.55	6.02	1.03
400 µL	13.06	2.16	0.059	0.21	0.12	0.67	3.03	1.09
$({\rm Fe}^{3+})$								
400 µL	10.21	1.79	0.010	0.16	0.11	0.73	1.83	1.05
(MVI_2)								

 $* < \tau > = a_1 \tau_1 + a_2 \tau_2 + a_2 \tau_2 + a_3 \tau_3$

Time (ns) Figure S65. Lifetime decay profile of **2'** in presence of aqueous Fe^{3+} solution ($\lambda_{\text{ex}} = 290$ nm, monitored at 400 nm).

Figure S66. Lifetime decay profile of **2'** in presence of aqueous MVI₂ solution ($\lambda_{ex} = 290$ nm, monitored at 400 nm).

Table S5. Excited-state lifetime analysis of **2'** in presence of Fe³⁺ aqueous solution ($\lambda_{ex} = 290$ nm, $\lambda_{em} = 400$ nm).

Volume of		τ (ns)			а		Average	χ^2
analyte	τ_1 (ns)	τ_2 (ns)	τ_3 (ns)	a_1	a_2	a ₃	lifetime	
added							(ns)	
							<\tau>*	
0	15.44	4.73	0.69	0.50	0.17	0.33	8.77	1.11
400 µL	9.92	0.93	0.06	0.30	0.12	0.58	3.17	1.04
$({\rm Fe}^{3+})$								
400 µL	10.31	1.87	0.14	0.16	0.11	0.73	1.94	1.01
(MVI_2)								

 $* < \tau > = a_1 \tau_1 + a_2 \tau_2 + a_2 \tau_2 + a_3 \tau_3$

Figure S67. Lifetime decay profile of **3'** in presence of aqueous Fe^{3+} solution ($\lambda_{\text{ex}} = 290$ nm, monitored at 400 nm).

Figure S68. Lifetime decay profile of **3'** in presence of aqueous MVI₂ solution ($\lambda_{ex} = 290$ nm, monitored at 400 nm).

Table S6. Excited-state lifetime analysis of **3'** in presence of different analyte in aqueous solution ($\lambda_{ex} = 290 \text{ nm}$, $\lambda_{em} = 400 \text{ nm}$).

Volume of		τ (ns)			а		Average	χ^2
analyte	τ_1 (ns)	τ_2 (ns)	τ_3 (ns)	a_1	a_2	a ₃	lifetime	
added (400							(ns)	
μL)							$<\tau>*$	
0	15.95	1.79	0.12	0.37	0.07	0.56	6.10	1.08
400 µL	15.59	1.95	0.105	0.14	0.05	0.81	2.35	1.03
$({\rm Fe}^{3+})$								
400 µL	14.95	1.88	0.10	0.28	0.04	0.68	4.32	1.01
(MVI_2)								

 $* < \tau > = a_1 \tau_1 + a_2 \tau_2 + a_2 \tau_2 + a_3 \tau_3$

Time (ns) Figure S69. Lifetime decay profile of **4'** in presence of aqueous Fe^{3+} solution ($\lambda_{ex} = 290$ nm, monitored at 400 nm).

Figure S70. Lifetime decay profile of **4'** in presence of aqueous MVI₂ solution ($\lambda_{ex} = 290$ nm, monitored at 400 nm).

Table S7. Excited-state lifetime analysis of 4' in presence of different analyte in aqueous solution ($\lambda_{ex} = 290 \text{ nm}$, $\lambda_{em} = 400 \text{ nm}$).

Volume of		τ (ns)			а		Average	χ^2
analyte	τ_1 (ns)	τ_2 (ns)	τ_3 (ns)	a_1	a ₂	a ₃	lifetime	
added							(ns)	
							$<\tau>*$	
0	16.71	1.95	0.12	0.33	0.10	0.57	5.8	1.04
400 µL	13.59	1.96	0.10	0.19	0.08	0.73	2.84	1.07
$({\rm Fe}^{3+})$								
400 µL	11.37	1.79	0.10	0.25	0.07	0.68	2.99	1.09
(MVI_2)								

 $* < \tau > = a_1 \tau_1 + a_2 \tau_2 + a_2 \tau_2 + a_3 \tau_3$

Figure S71. Change in the fluorescence intensity of **1'** upon addition of H_2O_2 solution (1mM) in presence of Fe²⁺ ion (500 µL).

Figure S72. Change in the fluorescence intensity of 2' upon addition of H_2O_2 solution (1 mM) in presence of Fe²⁺ ion (500 μ L).

Figure S73. Change in the fluorescence intensity of **3'** upon addition of H_2O_2 solution (1 mM) in presence of Fe²⁺ ion (500 µL).

Figure S74. Change in the fluorescence intensity of **4'** upon addition of H_2O_2 solution (1 mM) in presence of Fe²⁺ ion (500 μ L).

Figure S75. Change in the fluorescence intensity of **1'** upon addition of $Fe^{2+}-H_2O_2$ solution in presence of IPA (300 µL).

Figure S76. Change in the fluorescence intensity of **2'** upon addition of $Fe^{2+}-H_2O_2$ solution in presence of IPA (300 µL).

Figure S77. Change in the fluorescence intensity of **3'** upon addition of $Fe^{2+}-H_2O_2$ solution in presence of IPA (300 µL).

Figure S78. Change in the fluorescence intensity of **4'** upon addition of $Fe^{2+}-H_2O_2$ solution in presence of IPA (300 µL).

Figure S79. The fluorescence quenching efficiency of **1'** in presence of different input and its corresponding truth table for logic gate construction.

Figure S80. The fluorescence quenching efficiency of **2'** in presence of different input and its corresponding truth table for logic gate construction.

Figure S81. The fluorescence quenching efficiency of **3'** in presence of different input and its corresponding truth table for logic gate construction.

Figure S82. The fluorescence quenching efficiency of **4'** in presence of different input and its corresponding truth table for logic gate construction.

References:

- [1] S. Mostakim, M. Grzywa, D. Volkmer and S. Biswas, J. Solid State Chem. 2015, 232, 221-227.
- [2] K. Wang, H. Huang, W. Xue, D. Liu, X. Zhao, Y. Xiao, Z. Li, Q. Yang, L. Wang and C. Zhong, *CrystEngComm* **2015**, 17, 3586-3590.
- [3] C. Zhang, Y. Yan, Q. Pan, L. Sun, H. He, Y. Liu, Z. Liang and J. Li, *Dalton Trans.* **2015**, 44, 13340-13346.
- [4] Y.-F. Li, D. Wang, Z. Liao, Y. Kang, W.-H. Ding, X.-J. Zheng and L.-P. Jin, J. Mater. Chem. C 2016, 4, 4211-4217.
- [5] M. Zheng, H. Tan, Z. Xie, L. Zhang, X. Jing and Z. Sun, *ACS Appl. Mater. Interfaces* **2013**, 5, 1078-1083.
- [6] X.-H. Zhou, L. Li, H.-H. Li, A. Li, T. Yang and W. Huang, *Dalton Trans.* 2013, 42, 12403-12409.
- [7] Y. Wu, G.-P. Yang, Y. Zhang, N. Shi, J. Han and Y.-Y. Wang, *RSC Adv.* **2015**, *5*, 90772-90777.
- [8] X.-L. Zhao, D. Tian, Q. Gao, H.-W. Sun, J. Xu and X.-H. Bu, *Dalton Trans.* 2016, 45, 1040-1046.
- [9] K.-M. Wang, L. Du, Y.-L. Ma, J.-S. Zhao, Q. Wang, T. Yan and Q.-H. Zhao, *CrystEngComm* **2016**, 18, 2690-2700.
- [10] X.-Y. Xu and B. Yan, ACS Appl. Mater. Interfaces 2014, 7, 721-729.
- [11] C.-X. Yang, H.-B. Ren and X.-P. Yan, Anal. Chem. 2013, 85, 7441-7446.
- [12] G.-P. Li, G. Liu, Y.-Z. Li, L. Hou, Y.-Y. Wang and Z. Zhu, *Inorg. Chem.* 2016, 55, 3952-3959.
- [13] H. Xu, H.-C. Hu, C.-S. Cao and B. Zhao, Inorg. Chem. 2015, 54, 4585-4587.
- [14] X.-Y. Dong, R. Wang, J.-Z. Wang, S.-Q. Zang and T. C. Mak, *J. Mater. Chem. A* **2015**, 3, 641-647.
- [15] H. Weng and B. Yan, Sens. Actuator B-Chem. 2016, 228, 702-708.