Nano-graphene oxide-UCNPs-Ce6 covalently constructed nanocomposite for NIR-mediated bioimaging and PTT/PDT combinatorial therapy

Arif Gulzar, *‡ Jiating Xu, ‡ DanYang, Liangge Xu, Fei He, Shili Gai, Piaoping Yang*

Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China

Fig. S1 XRD pattern of core-shell UCNPs. The standard pattern of β -NaGdF₄ is given for comparison (JCPDS No.27-0699).

Fig. S2 Upconversion emission spectra of UCNPs and UCNPs-NH₂ excited with 808 nm laser.

Fig. S3 FT-IR spectra of NGO-PEG and NGO. The strong stretching vibration peak of C–H (\sim 2880 cm⁻¹) demonstrated the presence of PEG in the NGO-PEG. The appearance of the new absorption at \sim 1649 cm⁻¹ for –CONH– further indicated that PEG has been covalently boned on the surface of NGO.

Fig. S4 Temperature variation curves of NGO-PEG solution (0.4 mg/mL) subjected to the 808 nm laser (0.72 W cm⁻²).

Fig. S5 The UV-vis spectra of UCNPs-NGO aqueous solution, NUC aqueous solution and Ce6 in DMSO.

Fig. S6. Cell viability of L929 incubated with NUC.