Synthesis and Catalytic Activity of N-Heterocyclic Silylene (NHSi) Cobalt Hydride for Kumada Coupling Reactions

Xinghao Qi,^a Hongjian Sun,^{a,*} Xiaoyan Li,^{a,*} Olaf Fuhr,^b Dieter Fenske^b

^a School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250199 Jinan, People's Republic of China

^b Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

SI The table of selected crystallographic data	2
SII IR, ¹ H, ³¹ P, ¹³ C NMR, HH COSY, HMQC, HSQC and ²⁹ Si NMR	spectra of
complexes 5, 6 and 6d	3
SIII ¹ H and ¹³ C NMR spectra of coupling products	12
SIV MS of study on the catalytic reaction mechanism	27

	5	6	6d
formula	C41H76Cl3CoN4P2Si2	C106H138Cl4Co2N8OP6Si4	C55H73Cl2CoN4OP3Si2
M_z	908.45	2098.08	1085.09
crystal system	Monoclinic	Triclinic	Triclinic
space group	$P2_1/c$	P-1	P-1
<i>a</i> [Å]	13.8468(3)	13.9433(5)	13.9845(14)
<i>b</i> [Å]	19.5827(5)	17.2555(7)	17.415(2)
<i>c</i> [Å]	18.5459(4)	24.5173(10)	24.858(3)
α [°]	90	99.180(3)	98.767(9)
β [°]	103.406(2)	99.723(3)	101.053(8)
γ [°]	90	103.830(3)	103.860(8)
V [Å ³]	4891.8(2)	5521.0(4)	5642.2(11)
T [K]	150.15	150.15	173.15
Z	4	2	4
μ[mm ⁻¹]	5.581	4.862	0.568
total reflns	22857	49093	56456
unique reflns	7980	17989	30063
R _{int}	0.0674	0.1348	0.0696
$R_1[I \ge 2\sigma(I)]$	0.0466	0.0949	0.0838
$wR(F^2)[I>2\sigma(I)]$	0.0988	0.2452	0.2208
R ₁ (all data)	0.0827	0.1749	0.1409
wR(F ²)(all data)	0.1097	0.3026	0.2695
GOF on F^2	0.875	0.847	0.951

SI The table of selected crystallographic data

S II IR, ¹H, ³¹P and ¹³C NMR and ²⁹Si NMR spectra of complexes 5, 6 and 6d

IR spectrum of complex 5

¹H NMR of complex 5

¹³C NMR of complex **5**

Note: The peaks at 67.65 and 25.65 ppm belong to THF.

HH COSY of complex 5

HSQC of complex 5

HMQC of complex 5

²⁹Si NMR of complex 5

¹H NMR of complex **6**

¹³C NMR of complex **6**

Note: The peaks at 65.50 and 15.19 ppm belong to Et_2O .

HSQC of complex 6

HH COSY of complex 6

HMQC of complex 6

²⁹Si NMR of complex 6

¹H NMR of complex **6d**

³¹P NMR of complex **6d**

SIV MS of study on the catalytic reaction mechanism

MS of biphenyl

MS of the TEMPO capture product of phenyl radical

MS of the TEMPO capture product of 4-methyl-phenyl radical