Pt^{IV} azido complexes undergo copper-free click reactions with alkynes

Electronic Supplementary Information

Nicola J. Farrer,^{a*} Gitanjali Sharma,^a Rachel Sayers,^a Evyenia Shaili,^b Peter J. Sadler^b

Synthesis and Characterisation

Mono-substituted trans-[Pt(C₆H₆N₃O₄)(N₃)(py)₂]

Dimethyl acetylenedicarboxylate (**2**, 30.9 μ l, 0.25 mmol) in MeOH (5 ml) was added dropwise to *trans*-[Pt(N₃)₂(py)₂] (100 mg, 0.23 mmol) in MeOH (50 ml). The solution was stirred at 35°C for 2 days and then reduced to dryness. The solution was resuspended in minimal MeCN, filtered (IM) and purified by HPLC under neutral conditions to give the monosubstituted complex as a pale yellow solid (43 mg, 0.07 mmol, 32 %).

¹H NMR (400 MHz, d_3 -MeCN) δ : 8.73 (d, 4H, ${}^{3}J_{HH} = 7$, ${}^{3}J_{HPt} = 38$, H₀), 7.97 (dd, 2H, ${}^{3}J_{HH} = 7$, H_p), 7.49 (dd, ${}^{3}J_{HH} = 7$, H_m), 3.76 (s, OMe, 6H). ¹⁹⁵Pt NMR (86 MHz, d_3 -MeCN) δ : - 2219 (W ½ 1150 Hz). **ESI-MS** (MeOH) (M = *trans*-[Pt(C₆H₆N₃O₄)(N₃)(py)₂]) *m/z*: 602.111 ([M + Na]⁺, calcd 602.084); 580.125 ([M + H]⁺ calcd 580.102) **HRMS** (MeOH) *m/z*: 580.1020 ([M + H]⁺, C₁₆H₁₇N₈O₄Pt, calcd. 580.1015). **IR** v cm⁻¹: 2043 (N₃), 1728, 1452, 1289, 1172, 1090, 769, 693.

Bis-substituted trans- $[Pt(C_6H_6N_3O_4)_2(py)_2]$

Dimethyl acetylenedicarboxylate (**2**, 141 µl, 1.14 mmol) and *trans*-[Pt(N₃)₂(py)₂] (100 mg, 0.229 mmol) were stirred in MeOH (50 ml) at 35 °C for 3 d before the solvent was reduced in volume to 2 ml and placed in the fridge overnight. The solution was filtered and the precipitate washed with cold MeOH to give the title compound as a white solid (17.5 mg, 0.03 mmol, 11 %). NMR spectroscopic experiments were run on freshly made solutions since the complex was unstable in d_6 -acetone.

¹H NMR (600 MHz, d_6 -acetone) δ: 8.67 (d, 4H, ${}^{3}J_{HH} = 6$, H_o), 8.03 (dd, 2H, ${}^{3}J_{HH} = 7$, H_p), 7.55 (dd, ${}^{3}J_{HH} = 7$, H_m), 3.90 (6H, OMe), 3.75 (6H, OMe). ¹⁴N NMR (43 MHz, d_6 acetone) δ: 287.9 (sharp, N₂ gas), 216.1 (br, W_{1/2} 909 Hz N_{triazole}), 175.4 (br, W_{1/2} 793 Hz, N_{py}/N_{triazole}). ¹⁹⁵Pt NMR (129 MHz, d_6 -acetone) δ: -2331 (W_{1/2} 1100 Hz).

ESI-MS (MeOH) m/z: (M = trans-[Pt(C₆H₆N₃O₄)₂(py)₂]): 1465.176 ([2M + Na]⁺ calcd 1465.230); 1443.137 ([2M + H]⁺ calcd 1443.248); 744.094 ([M + Na]⁺ calcd 744.110);

722.045 ([M + H]⁺ calcd 722.128). **HRMS** (MeOH) m/z: 744.1095 ([M + Na]⁺, C₂₂H₂₂N₈O₈PtNa, calcd. 744.1101). **IR** v cm⁻¹: 1726, 1454, 1209, 1172, 771, 693.

Rearrangement complex 2a"

DMAD (**2**, 14 μ l, 0.117 mmol) in MeOH (2 ml) was added dropwise to **1** (50 mg, 0.106 mmol) in MeOH (3 ml). The solution was stirred at 35°C for 7d before being placed on ice. Product **2a''** was isolated as a white precipitate by filtration and rinsed with cold H₂O, MeOH and diethylether (18 mg, 0.03 mmol, 28 %). Complex **2a''** could also be obtained by dissolving **2a'** in CDCl₃ and leaving for several days.

¹**H NMR** (500 MHz, CDCl₃) δ : 9.01 (d, ³*J*_{HPt} = 27, ³*J*_{HH} = 6.0, 4H, H_o), 8.08 (t, ³*J*_{HH} = 6, *J*_{HH} = 6, 2H, H_p), 7.66 (dd, ³*J*_{HH} = 6, ³*J*_{HH} = 6, 4H, H_m), 3.88 (s, OCH₃, 3H), 2.89 (br, 1H), 1.69 (br, 1H).

¹⁹⁵Pt NMR (107 MHz, CDCl₃) δ: 764 (PWHH 680 ppm).

¹⁴**N NMR** (29 MHz, CDCl₃) δ: 288.6 (N₂ gas), 227.2 (N_β), 168.2 (N_γ/N_{py}). N_α not seen.

¹³**C** NMR (125 MHz, CDCl₃) δ : 164.3 (ester), 160.8 (ester), 149.4 C_{pyortho}), 142.2 (C_{pypara}), 139.1 (³*J*_{CPt}= 31.0, C_{triazole}), 135.6 (³*J*_{CPt}= 18.0, C_{triazole}), 127.1 (³*J*_{CPt}= 27.0, C_{pymeta}), 52.4 (C_{alkyl}).

IR (solid) v cm⁻¹: 3465, 2048 (_{asym}N₃), 1733, 1675, 1611, 1483, 1437, 1389, 1338, 1265, 1255, 1222, 1211, 1128, 1090, 1079, 836, 774, 691. **ESI-MS** identical to **2a'**.

Rearrangement complex 2b"

Complex 2b" was obtained by dissolving 2b' in CDCl₃ and leaving for several days.

¹**H NMR** (400 MHz, CDCl₃) δ: 8.94 (d, ${}^{3}J_{HPt}$ = 27.0, ${}^{3}J_{HH}$ = 6, 2H, H_o), 8.84 (dd, ${}^{3}J_{HPt}$ = 27.0, ${}^{3}J_{HH}$ = 6, 2H, H_o'), 8.10 (t, ${}^{3}J_{HH}$ = 6, 1H, H_p), 8.08 (t, ${}^{3}J_{HH}$ = 6, 1H, H_p'), 7.63 (m, ${}^{3}J_{HH}$ = 6, 4H, H_m), 3.91 (s, OCH₃, 3H), 3.88 (s, OCH₃, 3H).

Figure S1. ¹⁴N NMR (43 MHz) (d_6 -acetone) spectra of a) trans-[Pt(N₃)₂(py)₂] starting material¹ and b) *bis* substituted *trans*-[Pt(C₆H₆N₃O₄)₂(py)₂].

Figure S2. ¹⁴N NMR spectra of a) complex **1** (D_2O , 43 MHz) starting material¹ b) complex **2a'** (D_2O , 29 MHz) and c) complex **2a''** ($CDCl_3$, 28 MHz).

Figure S3. Solid-state IR spectra of a) *mono*-substituted 2a' and b) *bis*-substituted 2b'.

Figure S4. MS/MS of **2b**: *bis*-substituted DMAD complex *trans,trans,trans*-[Pt $(C_6H_6N_3O_4)_2(OH)_2(py)_2 + H]^+$, 756.14 *m/z* (model 756.13 *m/z*).

Figure S5. MS/MS of species intermediate between 2b and 2b': bis-substituted,mono-axiallytetheredDMADcomplextrans,trans,trans- $[Pt(C_6H_6N_3O_4)_2(C_5H_3N_3O_4)(OH)(py)_2 + H]^+, 724.11 m/z (model 724.10 m/z).$

Figure S6. ESI-MS (MeCN) of crystalline DEACD product **3a'** from reaction in d_4 -MeOH: a mixture of cyclometallated transesterified species $[Pt(py)_2(N_3)(OH)(N_3C_5O_4D_3) + Na]^+$ at 607.09 m/z (model 607.08 m/z) and cyclometallated product $[Pt(py)_2(N_3)(OH)(C_6H_5N_3O_4) + Na]^+$ at 618.08 m/z (model 618.08 m/z).

UV-vis spectra

8

Figure S7. UV-Vis spectra of **1** and its derivatives in MeCN/H₂O, with absorbance normalised at 211 nm for all species: a) DMAD (**2**) derivatives b) BCN (**11**) derivatives c) DBCO (**12**) derivatives

Figure S8. HRMS of DBCO products **12a** (748.2067 m/z, top) and **12b** (1024.3335 m/z, bottom) with isotope predictions.

References

1 N. J. Farrer, P. Gierth and P. J. Sadler, *Chem. Eur. J.*, 2011, **17**, 12059–66.