Synthesis of Three-Dimensional Mesoporous Cu-Al Layered Double Hydroxide/g-C₃N₄ Nanocomposites on Ni-foam for Enhanced Supercapacitors with Excellent Long-Term Cycling Stability

Surya Prasad Adhikari^{1, 2, 3,#}, Ganesh Prasad Awasthi^{1,#}, Kyung-Suk Kim⁴, Chan Hee Park^{1, 3*}, Cheol Sang Kim^{1, 3*}

¹Department of Bionanosystem Engineering, Chonbuk National University, Jeonju 561-756,

Republic of Korea

²Institute of Engineering, Tribhuvan University, Kathmandu, Nepal

³Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756,

Republic of Korea

Department of Molecular Biology, College of Natural Sciences, Chonbuk National

University, Jeonju 561-756, Republic of Korea

Equally Contributed

*Corresponding authors:

Tel.: +82-63-270-4284; Fax: +82-63-270-2460

E-mail: adhikarisun@wrc.edu.np (S.P. Adhikari),

biochan@jbnu.ac.kr (C. H. Park),

chskim@jbnu.ac.kr (C. S. Kim)

Experimental

Synthesis of Ni-foam@Cu-Al LDH/g-C₃N₄ composite

The Cu-Al LDH and g-C₃N₄ composite on Ni-foam was prepared by a hydrothermal method with molar ratio 2:1 of Cu and Al, respectively. Typically, 0.144 g of Cu(NO₃)₂.3H₂O (0.02 mol), 0.112 g of Al(NO₃)₂.9H₂O (0.01 mol) and 0.027 g of urea (0.15 mol) were dissolved in 30 mL distilled water separately and stirred for 30 min. After this all solutions were mixed and again stirred for 1 h to form a clear mixed solution. The solution thus prepared was transferred into a 100 mL Teflon-lined stainless-steel autoclave. Then the Ni-foam@g-C₃N₄ was immersed into the above solution. The autoclave was sealed and heated at 130 °C for 4 hours. Then, the as-prepared nanocomposite was washed with distilled water and ethanol for several times and dried at 100 °C for 2 hours (denoted as Ni-foam@Cu-Al LDH/g-C₃N₄2:1). To analyze the effect of molecular ratio, another one sample was again prepared under the same process of Ni-foam@Cu-Al LDH/g-C₃N₄ – 2:1 using the molecular ratio 1:2 of Cu and Al, respectively (denoted as Ni-foam@Cu-Al LDH/g-C₃N₄ – 1:2).

Results and discussion

Structure and morphology of the composites

The XRD patterns of Ni-foam, Ni-foam@g-C₃N₄ tested at different times are shown in Figure S1a and Figure S1b. The corresponding peaks of g-C₃N₄ on Ni-foam@g-C₃N₄ on both did not appear. This may be due the low weight loading of g-C₃N₄ on Ni-foam. But, the decreased peak height of Ni on Ni-foam@g-C₃N₄ comparison to Ni-foam indicated that the g-C₃N₄ was successfully deposited on Ni-foam during electrodeposition.

Figure S1: XRD patterns of the Ni-foam, and Ni-foam@g-C₃N₄

Electrochemical measurements

To evaluate the macroscopic electrochemical surface reactions at the electrode materials of the supercapacitor, we first carried out CV measurements of both samples. Figure S2a shows the CV curves of Ni-foam@Cu-Al LDH/g-C₃N₄ – 1:2 and Ni-foam@g-C₃N₄, Ni-foam@Cu-Al LDH/g-C₃N₄ – 2:1 at 50 mVs⁻¹. The CV curve of Ni-foam@Cu-Al LDH/g-C₃N₄ – 2:1 have well defined oxidation and reduction peaks in comparison to Ni-foam@Cu-Al LDH/g-C₃N₄-1:2, which represents the better pseudocapacitive characteristics of Ni-foam@Cu-Al LDH/g- $C_3N_4 - 2:1$ than Ni-foam@Cu-Al LDH/g- $C_3N_4 - 1:2$ electrode. The oxidation peaks were observed at 0.43 and 0.38 mV for Ni-foam@Cu-Al LDH/g-C₃N₄-1:2 and Ni-foam@Cu-Al LDH/g-C₃N₄ – 2:1, respectively. Correspondingly, the reduction peaks were 0.13 and 0.08 V for Ni-foam@Cu-Al LDH/g-C₃N₄ – 1:2 and Ni-foam@Cu-Al LDH/g-C₃N₄ – 2:1, respectively. In accordance with the CV curves, the remarkable difference in electrochemical surface reaction between these two samples can be observed. The Ni-foam@Cu-Al LDH/g- $C_3N_4 - 2:1$ exhibited significantly larger rectangular curve, which is due to a well heterojunction formed between Cu-Al LDH and g-C₃N₄ sheets than Ni-foam@Cu-Al LDH/g-C₃N₄ -1:2. Here, the peak current observed in Ni-foam@Cu-Al LDH/g-C₃N₄-2:1 nanocomposite is higher than other. The specific capacitances of samples from the CV curves were

calculated using equation 1. The mass of active electrode for both samples was calculated from the weight difference of Ni-foam before and after loading g-C₃N₄, and Cu-Al LDH, which were approximately same for Ni-foam@Cu-Al LDH/g-C₃N₄ – 1:2 and Ni-foam@Cu-Al LDH/g-C₃N₄ – 2:1. The Figure S2b shows the corresponding calculated specific capacitance for both samples, which were 530.3012 and 770.98 Fg⁻¹ for Ni-foam@Cu-Al LDH/g-C₃N₄ – 1:2 and Ni-foam@Cu-Al LDH/g-C₃N₄ – 2:1, respectively. Here, the specific capacitance obtained from Ni-foam@Cu-Al LDH/g-C₃N₄ – 2:1 was significantly higher than the specific capacitance obtained from Ni-foam@Cu-Al LDH/g-C₃N₄ – 1:2, which may be due to the better pseudocapacitive characteristics and well hetero-junction formed between Cu-Al LDH and g-C₃N₄ sheets in Ni-foam@Cu-Al LDH/g-C₃N₄ – 2:1 than Ni-foam@Cu-Al LDH/g-C₃N₄ – 1:2. This result demonstrates that the molecular ratio of Cu and Al has momentous effect on the electrochemical performance of the nanocomposites.

Figure S2: CV curves of the samples at scan rate of 50 mVs⁻¹ in 6 M KOH electrolyte (a),

Specific capacitance calculated from CV curves (b)