Electronic Supplementary Information

Distinct Photophysical Behaviour and Transport of Cell-Impermeable [Ru(bpy)₂dppz]²⁺ in Live Cells using Cucurbit[7]uril as Delivery System

Meenakshi N. Shinde, , Soniya S. Rao, Shridhar P. Gejji and Anupa A. Kumbhar*

Department of Chemistry, Savitribai Phule Pune University, Pune-411 007, India.

*Author to whom correspondence should be addressed.

E-mail address: aak@chemunipune.ac.in

Chart S1. Structure of Cucurbit[7]uril

Chart S2. Structure of β -cyclodextrin

Fig. S1. Absorption spectra of complex **1** (7.5 μ M) (A) in presence of CB7 (μ M): 1) 0, 2) 1500 (B) in presence of β -CD (μ M): 1) 0 2) 4000.

Fig. S2. (A). Emission spectra of Complex **1** (7.5 μ M) with Ct-DNA (400 μ M) (B). Emission spectra of Complex **1** (7.5 μ M) 1) in water (black line) 2) Complex **1** in β -CD (4000 μ M) (blue line) 3) Complex **1** with CB7 (1000 μ M) (red line) (C). Excitation spectra of Complex **1** (7.5 μ M) with CB7 (1000 μ M).

Fig. S3. Job's Plot for Complex 1-CB7

Fig. S4. Fluorescence lifetime decay of Complex 1 (7.5µM) (A) in CB7 (1mM) and (B) in n-octanol solvent

Fig. S5. (a) ¹H-NMR of free Complex **1** (b) ¹H-COSY NMR of free Complex **1** (c) ¹H-NOESY NMR of free Complex **1**

Fig. S6. (a) ¹H-NMR of complex **1**-CB7 (b) ¹H-COSY NMR of complex **1**-CB7 (c) ¹H-NOESY NMR of complex **1**-CB7

Fig. S7. ¹H-NMR of Complex $1-\beta$ -CD

(A) CB[7]@Complex 1 (front view)

CB[7]@Complex 1 (side view)

(B) β -CD@Complex **1**

Fig. S8: Electron density isosurfaces (0.001 au) overlaid with MESP (from +0.045 to -0.045 au) in (A) **1**-CB7, (B) **1**- β -CD.

Protons	Free complex	Complex 1 @CB[7]	Complex 1 @β-CD
H _e	9.63	9.27	10.37
H _d	9.77	9.34	9.93
H_{c}	9.63	9.18	8.03
H_g	8.66	8.36	9.374

Table S1. Theoretical ¹H-NMR shifts in ppm

Loading Efficiency: The loading efficiency was calculated considering that **1** is completely encapsulated (~100%) when emission titration attains saturation at 1.2mM of CB7 against 7.5 μ M of **1**. Hence for cell imaging experiments, 200 μ M of CB7 will guarantee 3.25 % encapsulation of loaded 100 μ M of **1**. From that, we calculated the amount of encapsulated and free ruthenium. Then by using following equation, we calculated the loading efficiency:

Loading efficiency = (total amount of Ru encapsulated-free Ru)/(wt of complex 1+wt of CB7)

Fig. S9: Effect of concentration on cytotoxicity of complex **1**, CB7 and adduct of **1**-CB7 complex on MCF-7 cell line after 24 h incubation at 37°C. [**1**] = 25, 50, 75 and 100 μ M and corresponding [CB7] = 50, 100, 150 and 200 μ M. For [**1**-CB7 complex] = 25-50; 50-100; 75-150 and 100-200 μ M respectively.

