Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supplementary data file

Three-in-one type fluorescent sensor based on pyrene pyridoxal cascade for the selective

detection of Zn(II), hydrogen phosphate and cysteine

Yachana Upadhyay^{a, Φ}, Thangaraj Anand^{a, Φ}, Lavanya Thilak Babu^b, Priyankar Paira^b, Guido

Crisponi^c, Ashok Kumar SK^d, Rajender Kumar^a and Suban K Sahoo^{a,*}

^a Department of Applied Chemistry, SV National Institute of Technology (SVNIT), Surat-

395007, India. (E-mail: suban_sahoo@rediffmail.com; Tel.: 91-261-2201855)

^b Pharmaceutical Chemistry Division, School of Advanced Sciences, VIT University, Vellore-

632014, India.

^c Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, 09042 Monserrato, Italy.

^d Materials Chemistry Division, School of Advanced Sciences, VIT University, Vellore-632014, India.

Fig. S1. ¹H NMR spectrum of L in DMSO- d_6 .

Fig. S2. HRMS spectrum of L.

Fig. S3. ATR-FTIR spectrum of L.

Fig. S4. UV-Visible absorbance spectra of L (50 μ l H₂O, 1950 μ l DMSO, 2.5×10⁻⁵M) upon the addition of Cu²⁺, Co²⁺, Ni²⁺, Mn²⁺, Mg²⁺, Fe³⁺, Fe²⁺, Zn²⁺, Cd²⁺, Hg²⁺, Pb²⁺, Al³⁺ and Cr³⁺ ions (50 μ L, 1×10⁻³M, H₂O).

Fig. S5. ¹H NMR titration of L upon addition of Zn^{2+} ion at different equivalents in DMSO-d₆.

Fig. S6. The Job's plot for the complexation occurred between L and Zn^{2+} ion.

Fig. S7. Time-resolved fluorescence decay of L in the absence (a) and presence (b) of Zn^{2+} ($\lambda_{exc} = 325 \text{ nm}$; $\lambda_{em} = 485 \text{ nm}$).

Fig. S8. Excitation spectra of the receptor L and its ZnL_2 complex at different λ_{em} in DMSO containing 2.5% H₂O.

Fig. S9. (A) Calculated spectra of free receptor L and its ZnL_2 complex with HypSpec program, for the formation of a single complex ZnL_2 with complex formation constant log $\beta = 10.03(1)$; (B) the fluorescence spectrum of $L = 2.5 \times 10^{-5}$ M in absence (b) and presence of $Zn^{2+} = 3.19 \times 10^{-5}$ M (a).

Fig. S10. ATR-FTIR spectra of L and its complex with Zn^{2+} .

Fig. S11. HRMS spectrum of the zinc complex. The peak at m/z = 823.08 was assigned for the complex species $Zn(L-H^+)_2$.

Fig. S12. (a) UV-Visible and (b) fluorescence spectra ($\lambda_{exc} = 325$ nm, slit width: 5/5 nm) of Zn(L-H⁺)₂ complex (2.5×10⁻⁵ M) in DMSO containing 2.5% H₂O.

Fig. S13. UV-Visible spectra of L (2.5×10^{-5} M) and ZnL₂ (2.5×10^{-5} M) in the absence and presence of H₂PO₄⁻ (50 µl, 1×10^{-3} M, H₂O) and cysteine (50 µl, 1×10^{-3} M, H₂O).

Fig. S14. UV-Visible absorbance spectra of ZnL₂ (2.5×10^{-5} M, H₂O) with Cys, Gsh and Hcy (50 µl, 1×10^{-3} M, H₂O).

Fig. S15. Fluorescence spectra of L (2.5×10^{-5} M) and ZnL₂ (2.5×10^{-5} M) in the absence and presence of H₂PO₄⁻ (50 µl, 1×10^{-3} M, H₂O) and cysteine (50 µl, 1×10^{-3} M, H₂O).

Compounds	$\tau_1(ns)$	$ au_2(ns)$	A1%	A2%	T _{Avg} (ns)
L	6.76	2.37	61.21	33.85	4.95
ZnL ₂	6.79	2.39	60.83	34.21	4.96

Table S1. TRPL decay constants (τ) of L and ZnL₂ complex.

Table S2. Comparison table of L with some reported fluorescent sensors for Zn^{2+} .

Systems	Solvent Systems	Sensing metal ion	Detection limit	Applications	Ref*
Salicylaldehyde	MeOH:H ₂ O	Zn ²⁺ -Turn on	1.44×10 ⁻⁷ M		1
Schiff base					
Quinoline	MeOH:H ₂ O	Fe ³⁺ -			2
conjugate		Colorimetry	10 ⁻⁶ M		
		Zn ²⁺ -Turn on	10 ⁻⁵ M		
		Cu ²⁺ - Turn off			
Pyrene Schiff	CH ₃ CN:H ₂ O	Zn ²⁺ - turn on	1.38×10 ⁻⁶ M		3
base					
Salicylhydrazide	МеОН	Zn ²⁺ - Turn on	3.33×10 ⁻⁷ M	Live cell	4
Schiff base		Al ³⁺ -Turn on	8.31×10 ⁻⁸ M	imaging	
Aminophenyl	CH ₃ CN:H ₂ O	Zn ²⁺ -Turn on	4.5×10 ⁻⁹ M	-	5
benzimidazole					
schiff base					
Coumarin Schiff	MeOH:H ₂ O	Zn ²⁺ - Turn on	0.068×10-	Live cell	6
base			⁶ M	imaging	
Benzimidazole	DMSO:CH ₃ CN	Zn ²⁺ -turn on	3×10-6 M	Live cell	7
Schiff base				imaging	
Pyridoxal Schiff	EtOH:H ₂ O	Zn ²⁺ - Turn on	μM		8
base					
Pyrene with	DMSO:H ₂ O	Zn ²⁺ - Turn on	2.34×10 ⁻⁶ M		This
pyridoxal					work

References

- 1. W. K. Dong, S. F. Akogun, Y. Zhang, Y. X. Sun, X. Y. Dong, Sens. Actuators B, 2017, 238, 723.
- 2. N. Roy, S. Nath, A. Dutta, P. Mondal, P. C. Paul and T. Sanjoy Singh, *RSC Adv.*, 2016, 6, 63837.
- 3. C. Gao, H. Zhu, M. Zhang, T. Tan, J. Chena and H. Qiu, Anal. Methods, 2015, 7, 8172.
- 4. Y. Fu, Y. Tu, C. Fan, C. Zheng, G. Liu and S. Pu, New J. Chem., 2016, 40, 8579.
- 5. S. Janakipriya, S. Tamilmanib and S. Thennarasu, RSC Adv., 2016, 6, 71496.
- C. Patra, A. K. Bhanja, A. Mahapatra, S. Mishra, K. D. Saha and C. Sinha, *RSC Adv.*, 2016, 6, 76505.
- 7. M. J. Kim, K. Kaur, N. Singh, D. O. Jang, Tetrahedron, 2012, 68, 5429.
- 8. J. Wang, Y. Li, E. Duah, S. Paruchuri, D. Zhou and Y. Pang, *J. Mater. Chem.* B, 2014, **2**, 2008.
