Supplementary Information (DT-ART-11-2017-004327)

Preparation and Reactivity of Iron Complexes Bearing Anionic Carbazole-Based PNP-Type Pincer Ligands toward Catalytic Nitrogen Fixation

Junichi Higuchi, Shogo Kuriyama, Aya Eizawa, Kazuya Arashiba, Kazunari Nakajima, and Yoshiaki Nishibayashi*[†]

Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

General Methods.

¹H NMR (270 MHz), and ³¹P{¹H} NMR (109 MHz) spectra were recorded on a JEOL Excalibur 270 spectrometer in suitable solvent, and spectra were referenced to residual solvent (¹H) or external standard (³¹P{¹H}: H₃PO₄). IR spectra were recorded on a JASCO FT/IR 4100 Fourier Transform infrared spectrometer. Magnetic susceptibility was measured in solution by using Evans' method.^{S1} Absorption spectra were recorded on a Shimadzu MultiSpec-1500. Evolved dihydrogen and methane were quantified by a gas chromatography using a Shimadzu GC-8A with a TCD detector and a SHINCARBON ST (6 m × 3 mm). Elemental analyses were performed at Microanalytical Center of The University of Tokyo.

All manipulations were carried out under an atmosphere of nitrogen by using standard Schlenk techniques or glovebox techniques unless otherwise stated. Solvents were dried by general methods, and degassed before use. 1,8-bis(bromomethyl)-3,6-di-*tert*-butyl-9H-carbazole (**4**),^{S2} [FeCl₂(thf)_{1.5}] (thf = tetrahydrofuran),^{S3} KC₈,^{S4} and [H(OEt₂)₂]BAr^F₄ (Ar^F = 3,5-(CF₃)₂C₆H₃)^{S5} were prepared according to the literature method. All the other reagents were commercially available.

Preparation of 5a.

Pincer ligands **5a** and **5b** were prepared by a similar method to Gade's procedure.⁸²

To a solution of **4** (885 mg, 1.90 mmol) in acetone (15 mL) was added di-*tert*-butylphosphine (1.00 mL, 5.40 mmol) at room temperature, and the resultant mixture was heated at reflux temperature for 2 h. After the reaction mixture was cooled to room temperature, the solvent was removed *in vacuo*. The obtained solid was washed with Et₂O (5 mL, 3 times) and dried *in vacuo*. After sodium acetate (4.3 g), degassed water (15 mL) and Et₂O (15 mL) were added to the residue, the mixture was stirred at room temperature for 20 min. The mixture was extracted with Et₂O (10 mL, 3 times) and the combined extracts were dried over anhydrous MgSO₄. After filtration, the solvent was removed, and the residue was dried *in vacuo* to give **5a** as a pale-yellow solid (1.09 g, 1.83 mmol, 96%). ¹H NMR (C₆D₆) δ 10.20 (br s, N*H*, 1H), 8.18 (pseudo d, *J* = 1.6 Hz, Ar-*H*, 2H), 7.55 (s, Ar-*H*, 2H), 3.22 (s, ArC*H*₂P, 4H), 1.50 (s, Ar'*Bu*, 18H), 1.14 (d, *J* = 10.5 Hz, ^{*t*}*Bu*₂P, 36H). ³¹P{¹H} NMR (C₆D₆) δ 17.7 (s). Anal. Calcd. for C₃₈H₆₃NP₂: C, 76.60; H, 10.66; N, 2.35. Found: C, 76.52; H, 10.21; N, 2.74.

Preparation of 5b.

To a solution of **4** (83.2 mg, 0.179 mmol) in acetone (3 mL) was added di-1-adamantylphosphine (131 mg, 0.433 mmol) at room temperature and the resultant mixture was heated at reflux temperature for 24 h. After the reaction mixture was cooled to room temperature, the solvent was removed *in vacuo*. The obtained solid was washed with Et₂O (2 mL, 3 times) and dried *in vacuo*. After sodium acetate (0.90 g, 11 mmol), degassed water (4 mL) and Et₂O (5 mL) were added to the

residue, the mixture was stirred at room temperature for 20 min. The mixture was extracted with Et₂O (4 mL, 3 times) and the combined extracts were dried over anhydrous MgSO₄. After filtration, the solvent was removed, and the residue was dried *in vacuo* to give **5b** as a white solid (146 mg, 0.161 mmol, 90%). ¹H NMR (C₆D₆) δ 10.27 (br s, N*H*, 1H), 8.16 (pseudo d, *J* = 1.6 Hz, Ar-*H*, 2H), 7.64 (s, Ar-*H*, 2H), 3.29 (s, ArC*H*₂P, 4H), 2.15-1.99 (m, Ad-C*H*_{2(γ)}, 24H), 1.88 (s, Ad-C*H*_{(β)</sup>, 12H), 1.70 (s, Ad-C*H*_{2(α)}, 24H), 1.55 (s, Ar^{*i*}*Bu*, 18H). ³¹P{¹H} NMR (C₆D₆) δ 11.4 (s). Anal. Calcd. for C₆₂H₈₇NP₂: C, 81.98; H, 9.65; N, 1.54. Found: C, 81.63; H, 9.57; N, 1.88.}

Preparation of lithium 3,6-di-*tert*-butyl-1,8-bis(di-*tert*-butylphosphinomethyl)carbazolide (5a-Li).

To a solution of **5a** (336 mg, 0.564 mmol) in THF (2 mL) was added dropwise ^{*n*}BuLi (1.55 M in hexane, 0.40 mL, 0.62 mmol) at 0 °C. After the reaction mixture was stirred at 0 °C for 1 h, the solvent was removed, and the residue was dried *in vacuo*. The obtained solid was washed with pentane and dried *in vacuo* to afford **5a**-Li as a yellow solid (268 mg, 0.445 mmol, 79%). The product was used for the subsequent reaction without further purification. ¹H NMR (THF-d₈) δ 7.75 (s, Ar-*H*, 2H), 7.30 (s, Ar-*H*, 2H), 3.39 (d, *J* = 3.0 Hz, ArC*H*₂P, 4H), 1.39 (s, Ar^{*t*}*Bu*, 18H), 1.18 (d, *J* = 10.5 Hz, ^{*t*}*Bu*₂P, 36H). ³¹P{¹H} NMR (THF-d₈) δ 29.8 (s).

Preparation of 6a.

To a suspension of [FeCl₂(thf)_{1.5}] (332 mg, 1.41 mmol) in toluene (6 mL) was added a suspension

of **5a**-Li (850 mg, 1.41 mmol) in toluene (6 mL), and the resultant red mixture was stirred at room temperature for 16 h. Hexane (5 mL) was added to the red mixture, and the mixture was stirred at room temperature for several minutes. The mixture was filtered through Celite, and the filter cake was washed with hexane (3 mL, 3 times) and Et₂O (3 mL, 3 times). The combined filtrate was concentrated to *ca*. 5 mL to afford **6a** as an orange solid, which was collected by decantation, washed with a small amount of hexane and dried *in vacuo* (791 mg, 1.15 mmol, 82%). Single crystals of **6a**·0.5C₆H₁₄ suitable for X-ray crystallography were obtained as orange crystals by recrystallization from hexane at -30 °C. ¹H NMR (C₆D₆) δ 47.0, 15.3, 9.1, 5.7, 1.9. Magnetic susceptibility (Evans' method): $\mu_{eff} = 4.9 \pm 0.3 \ \mu_B$ in C₆D₆ at 298 K. Anal. Calcd. for C₃₈H₆₂ClFeNP₂: C, 66.52; H, 9.11; N, 2.04. Found: C, 66.84; H, 9.41; N, 2.12.

Preparation of 6b·C₆H₆.

A solution of **5b** (454 mg, 0.500 mmol) and LiN(SiMe₃)₂ (87.4 mg, 0.522 mmol) in THF (5 mL) was stirred at room temperature for 2 h. After the solvent was removed, [FeCl₂(thf)_{1.5}] (117 mg, 0.498 mmol) and toluene (7 mL) was added to the orange residue, and then the resultant red mixture was stirred at room temperature for 13 h. After the solvent was removed, the red residue was dissolved in benzene (10 mL). The solution was filtered through Celite, and the filter cake was washed with benzene (5 mL, 5 times). The product was recrystallized from benzene–hexane to afford **6b**·C₆H₆ as orange crystals, which were collected by decantation, washed with hexane and dried *in vacuo* (387 mg, 0.359 mmol, 72%). ¹H NMR (C₆D₆) δ 46.2, 9.3, 6.8, 5.6, 2.2, 1.9, 1.2, 0.1, -6.0. Magnetic susceptibility (Evans' method): $\mu_{eff} = 4.7 \pm 0.3 \mu_{B}$ in C₆D₆ at 298 K. Anal. Calcd. for C₆₈H₉₂FeClNP₂ (**6b**·C₆H₆): C, 75.85; H, 8.61; N, 1.30. Found: C, 75.51; H, 8.40; N, 1.41.

Preparation of 7a.

A suspension of **6a** (206 mg, 0.300 mmol) and KC₈ (44.5 mg, 0.329 mmol) in THF (6 mL) was stirred at room temperature for 17 h under N₂ (1 atm). After the solvent was removed, the dark yellow residue was dissolved in hexane (3 mL). The solution was filtered through Celite, and the filter cake was washed with hexane (2 mL, 3 times) and Et₂O (2 mL, 3 times). The combined filtrate was concentrated to *ca*. 3 mL, and the solution was kept at -17 °C to give **7a** as a dark brown solid, which was collected by decantation, washed with a small amount of hexane, and dried *in vacuo* (112 mg, 0.0842 mmol, 56%). Single crystals of **7a**·0.5C₆H₆ suitable for X-ray crystallography were obtained as dark green crystals by recrystallization from hexane-Et₂O-benzene at -30 °C. ¹H NMR (C₆D₆) δ 12.8, 11.5, 4.0, 3.2, 2.0, 1.5, 1.23, 1.15, 0.9, -0.4, -7.1, -9.7. Magnetic susceptibility (Evans' method): $\mu_{eff} = 7.5 \pm 0.7 \ \mu_B$ in C₆D₆ at 298 K. Anal. Calcd. for C₇₆H₁₂₄Fe₂N₄P₄: C, 68.66; H, 9.40; N, 4.21. Found: C, 68.61; H, 9.26; N, 3.03. It is considered that the low content of nitrogen is due to the labile property of the coordinated molecular dinitrogen in **7a**.

Preparation of 8a.

To a suspension of **6a** (207 mg, 0.302 mmol) in Et₂O (8 mL) was added MeMgCl (3.0 M in THF, 110 μ L, 0.330 mmol) at room temperature, and resultant yellow mixture was stirred at room temperature for 1 h. After a small amount of 1,4-dioxane was added, the mixture was stirred at

room temperature for 10 min and the solvent was removed *in vacuo*. After addition of hexane (5 mL) to the yellow residue, the solution was filtered through Celite, and the filter cake was washed with hexane (2 mL, 3 times) and Et₂O (2 mL, 3 times). The combined filtrate was concentrated to *ca*. 3 mL and the solution was kept at -30 °C to give **8a** as a yellow solid, which was collected by decantation, washed with a small amount of hexane, and dried *in vacuo* (170 mg, 0.255 mmol, 85%). Single crystals of **8a** $\cdot 0.5C_4H_{10}O$ suitable for X-ray crystallography were obtained as yellow crystals by recrystallization of crude mixture from hexane at -30 °C. ¹H NMR (C₆D₆) δ 39.2, 27.9, 3.4, 1.5, 1.2, 0.9, 0.5, -4.1. Magnetic susceptibility (Evans' method): $\mu_{eff} = 4.7 \pm 0.3 \ \mu_B$ in C₆D₆ at 298 K. Anal. Calcd. for C₃₉H₆₅FeNP₂: C, 70.36; H, 9.84; N, 2.10. Found: C, 70.51; H, 9.77; N, 2.17.

Preparation of 8b.

To a solution of **6b**•C₆H₆ (108 mg, 0.100 mmol) in THF (4 mL) was added MeMgCl (3.0 M in THF, 37 μ L, 0.11 mmol) at room temperature and the resultant yellowish-brown mixture was stirred at room temperature for 2 h. After a small amount of 1,4-dioxane was added, the mixture was stirred at room temperature for 20 min and the solvent was removed *in vacuo*. After the addition of benzene (2 mL) to the yellow residue, the suspension was filtered through Celite, and the filter cake was washed with benzene (2 mL, 4 times) and toluene (2 mL, 2 times). The product was recrystallized from benzene–toluene–hexane to afford **8b**•C₆H₆ as a yellow solid, which was collected by decantation, and dried *in vacuo* (67.5 mg, 0.0639 mmol, 64%). ¹H NMR (C₆D₆) δ 37.9, 12.5, 5.9, 4.9, 2.8, 0.5, 0.3, -0.7, -2.5. Magnetic susceptibility (Evans' method): $\mu_{eff} = 4.7 \pm 0.3 \,\mu_{B}$ in C₆D₆ at 298 K. Anal. Calcd. for C₆₉H₉₅FeNP₂ (**8b**•C₆H₆): C, 78.46; H, 9.07; N, 1.33. Found: C, 78.16; H, 8.98; N, 1.50.

X-ray crystallography.

Crystallographic data of **6a**, **6b**, **7a**, and **8a**·0.5C₄H₁₀O are summarized in Tables S1–S2. The ORTEP drawings of **6a**, **6b**, **7a**, and **8a**·0.5C₄H₁₀O are shown in Figures S2–S5 and selected bond lengths and angles of **6a**, **6b**, **7a**, and **8a**·0.5C₄H₁₀O are shown in Tables S3–S6. Diffraction data for **6a**, **6b**, **7a**, and **8a**·0.5C₄H₁₀O are shown in Tables S3–S6. Diffraction data for **6a**, **6b**, **7a**, and **8a**·0.5C₄H₁₀O are shown in Tables S3–S6. Diffraction data for **6a**, **6b**, **7a**, and **8a**·0.5C₄H₁₀O were collected for the 2 θ range of 4° to 55° at –100 °C on a Rigaku RAXIS RAPID imaging plate area detector with graphite-monochromated Mo $K\alpha$ radiation ($\lambda = 0.71075$ Å), with VariMax optics. Intensity data were corrected for Lorenz-polarization effects and for empirical absorption (ABSCOR). The structure solution and refinements were carried out by using the *CrystalStructure* crystallographic software package.⁸⁶ The positions of the non-hydrogen atoms were determined by direct methods (SIR 97⁸⁷ for **6a**, **6b**, **8a**·0.5C₄H₁₀O, SHELXS97⁸⁸ for **7a**) and subsequent Fourier syntheses (SHELXL Version 2016/6⁸⁸), and were refined on F_0^2 using all unique reflections by full-matrix least-squares with anisotropic thermal parameters except for some carbon atoms refined isotropically. All the hydrogen atoms were placed at the calculated positions with fixed isotropic parameters, while positions of some hydrogen atoms could not be refined.

For the crystal of **6a** (**6a** \cdot 0.5C₆H₁₄, actually), one of the two crystallographically independent molecules contains whole molecule disorder where the central iron atom and its surrounding ligands may be disordered among more than two positions, but was solved modeling over two positions (Fe(2)–Cl(2) and Fe(3)–Cl(3)) with atom occupancies of 0.85 and 0.15, respectively, without solving minor disorders further, while positions of six hydrogen atoms bonded to two carbon atoms (C(67) and C(74)) close to the Cl(3) atom could not be refined (Figure S1). There is also one heavily disordered *tert*-butyl group rotating around a C–C bond, and was solved over two sets of three methyl groups (C(14A), C(15A), C(16A), and C(14B), C(15B), C(16B)) with atom occupancies of 0.6 and 0.4, respectively. The unit cell of **6a** contains a solvent accessible void of 982 Å³. The ¹H NMR of the crystals suggested that the void was occupied by one hexane molecule per asymmetric unit, which could not be located appropriately. The diffused electron density associated with the solvent molecule was removed by SQUEEZE routine in PLATON.^{\$9}

For the crystal of **6b** (**6b** \cdot C₆H₆, actually), the unit cell contains a solvent accessible void of 872 Å³. The ¹H NMR and the elemental analysis of the crystals suggested that the void was

occupied with one benzene molecule, which could not be located appropriately. The diffused electron density associated with the solvent molecule was removed by SQUEEZE routine in PLATON.⁸⁹

For the crystal of **7a** (**7a** \cdot 0.5C₆H₆, actually), the unit cell contains a solvent accessible void of 568 Å³. The ¹H NMR and the elemental analysis of the crystals suggested that the void was occupied with a half benzene molecule, which could not be located appropriately. The diffused electron density associated with the solvent molecule was removed by SQUEEZE routine in PLATON.^{S9}

For the crystal of $8a \cdot 0.5C_4H_{10}O$, there is one heavily disordered *tert*-butyl group rotating around a C–C bond, and was solved over two sets of three methyl groups (C(14A), C(15A), C(16A), and C(14B), C(15B), C(16B)) with atom occupancies of 0.6 and 0.4, respectively.

Figure S1. An ORTEP drawing of one of the crystallographically independent molecule of **6a**. The whole molecule disorder was solved over two positions (Fe(2)-Cl(2) and Fe(3)-Cl(3)).

	6a	6b
chemical formula	C ₃₈ H ₆₂ FeNP ₂	C ₆₂ H ₈₆ ClFeNP ₂
CCDC number	1546201	1546204
formula weight	686.16	998.62
dimensions of crystals	$0.40 \times 0.30 \times 0.15$	$0.30\times0.15\times0.05$
crystal color, habit	orange, block	orange, block
crystal system	monoclinic	monoclinic
space group	$P2_{1}/n$	$P2_{1}/c$
<i>a</i> , Å	23.0868(5)	11.7043(3)
b, Å	14.8066(4)	25.1225(5)
<i>c</i> , Å	24.7743(5)	19.9855(4)
α , deg	90	90
β , deg	93.479(7)	93.203(7)
γ, deg	90	90
V, Å ³	8453.2(3)	5867.4(2)
Ζ	8	4
$ ho_{ m calcd},~{ m g~cm}^{-3}$	1.078	1.130
<i>F</i> (000)	2960.00	2152.00
μ , cm ⁻¹	5.185	3.933
trans. factors range	0.622 - 0.925	0.686–0.981
no. reflections measured	72868	56900
no. unique reflections	19229 ($R_{\rm int} = 0.0726$)	13427 ($R_{\rm int} = 0.0614$)
no. parameters refined	828	604
$R1 (I > 2 \sigma(I))^a$	0.1168	0.0590
wR2 (all data) ^b	0.2535	0.1368
GOF (all data) ^{c}	1.217	1.029
max diff peak / hole, e Å $^{-3}$	0.82 / -1.24	0.86/-0.27

Table S1 | X-ray crystallographic data for 6a and 6b

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. \quad {}^{b}wR2 = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}, w = 1 / [\sigma^{2} (F_{o}^{2}) + (qP)^{2} + rP], P = (Max (F_{o}^{2}, 0) + 2 F_{c}^{2}) / 3 [q = 0.0798$ (6a), 0.0578 (6b); r = 22.3708 (6a), 5.0383 (6b)]. ${}^{c}GOF = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / (N_{o} - N_{params})]^{1/2}.$

	7a	$\mathbf{8a} \cdot 0.5 C_4 H_{10} O$
chemical formula	$C_{76}H_{124}Fe_2N_4P_4$	$C_{41}H_{70}FeNO_{0.5}P_2$
CCDC number	1546202	1546203
formula weight	1329.43	702.81
dimensions of crystals	$0.15\times0.10\times0.02$	$0.15 \times 0.10 \times 0.03$
crystal color, habit	brown, platelet	yellow, platelet
crystal system	monoclinic	monoclinic
space group	$P2_{1}/a$	$P2_{1}/n$
a, Å	25.4160(5)	23.1407(4)
b, Å	13.1322(3)	14.8928(3)
<i>c</i> , Å	24.3186(6)	24.4042(4)
α , deg	90	90
β , deg	102.791(7)	92.8868(7)
γ, deg	90	90
<i>V</i> , Å ³	7915.4(4)	8399.8(3)
Ζ	4	8
$ ho_{ m calcd}, { m g cm}^{-3}$	1.116	1.111
<i>F</i> (000)	2880.00	3064.00
μ , cm ⁻¹	4.872	4.626
trans. factors range	0.595-0.990	0.680–0.986
no. reflections measured	74187	79684
no. unique reflections	17614 ($R_{\rm int} = 0.0937$)	19147 ($R_{\rm int} = 0.0858$)
no. parameters refined	810	853
$R1 (I > 2 \sigma(I))^a$	0.0649	0.0523
wR2 (all data) ^b	0.1603	0.1212
GOF (all data) ^{c}	1.021	1.012
max diff peak / hole, e Å $^{-3}$	0.70/-0.58	0.74/-0.55

Table S2 | X-ray crystallographic data for 7a and $8a \cdot 0.5C_4H_{10}O$

 ${}^{a} R1 = \Sigma ||F_{o}| - |F_{c}|| \Sigma |F_{o}|. \quad {}^{b} wR2 = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}, w = 1/[\sigma^{2}(F_{o}^{2}) + (qP)^{2} + rP], P = (Max(F_{o}^{2}, 0) + 2 F_{c}^{2}) / 3 [q = 0.0755 (7a), 0.0592 (8a \cdot 0.5C_{4}H_{10}O); r = 3.2458 (7a), 0 (8a \cdot 0.5C_{4}H_{10}O)]. \quad {}^{c} GOF = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / (N_{o} - N_{params})]^{1/2}.$

Figure S2. ORTEP drawing of **6a**. Thermal ellipsoids are shown at the 50% probability level. Only one of the two crystallographically independent molecules is shown, while minor disorder components and hydrogen atoms are omitted for clarity.

Fe(1)—N(1)	1.973(4)	Fe(2)—N(2)	1.958(4)
Fe(1) - P(1)	2.4349(13)	Fe(2)—P(3)	2.4637(18)
Fe(1) - P(2)	2.5015(13)	Fe(2)— $P(4)$	2.5031(19)
Fe(1)— $Cl(1)$	2.2853(14)	Fe(2)—Cl(2)	2.252(2)
P(1) - Fe(1) - P(2)	130.67(5)	P(3) - Fe(2) - P(4)	139.80(7)
N(1)— $Fe(1)$ — $P(1)$	97.17(11)	N(2) - Fe(2) - P(3)	97.65(13)
N(1)— $Fe(1)$ — $P(2)$	88.40(11)	N(2)—Fe(2)—P(4)	95.53(13)
N(1)—Fe(1)—Cl(1)	118.30(12)	N(2)—Fe(2)—Cl(2)	105.02(15)
P(1)— $Fe(1)$ — $Cl(1)$	111.54(5)	P(3)— $Fe(2)$ — $Cl(2)$	106.43(8)
P(2)— $Fe(1)$ — $Cl(1)$	108.30(5)	P(4) - Fe(2) - Cl(2)	106.47(9)

 Table S3.
 Selected Bond Lengths (Å) and Angles (deg) for 6a.

Figure S3. ORTEP drawing of **6b**. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

Fe(1)—N(1)	2.000(2)
Fe(1)—P(1)	2.4471(7)
Fe(1)—P(2)	2.4459(7)
Fe(1)—Cl(1)	2.2716(8)
P(1)—Fe(1)—P(2)	139.87(3)
N(1)—Fe(1)—P(1)	96.72(6)
N(1)—Fe(1)—P(2)	95.85(6)
N(1)—Fe(1)—Cl(1)	107.55(7)
P(1)— $Fe(1)$ — $Cl(1)$	106.04(3)
P(2) - Fe(1) - Cl(1)	106.11(3)

Figure S4. ORTEP drawing of **7a**. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

Table S5. Select	ed Bond	Lengths	(A)) and	Angles	(deg)	for	7a.
---------------------	---------	---------	-----	-------	--------	-------	-----	-----

Fe(1)—N(1)	2.055(3)	Fe(2)—N(2)	1.959(3)
Fe(1)—P(1)	2.3449(10)	Fe(2)—P(3)	2.5396(10)
Fe(1)—P(2)	2.3922(9)	Fe(2)—P(4)	2.4122(10)
Fe(1)—N(3)	1.746(3)	Fe(2)—N(4)	1.743(3)
N(3)—N(4)	1.106(4)		
P(1)—Fe(1)—P(2)	135.63(4)	P(3)—Fe(2)—P(4)	141.67(4)
N(1)—Fe(1)—P(1)	99.36(7)	N(2)—Fe(2)—P(3)	89.34(8)
N(1)—Fe(1)—P(2)	92.60(7)	N(2)—Fe(2)—P(4)	95.29(8)
N(1)—Fe(1)—N(3)	115.61(12)	N(2)—Fe(2)—N(4)	117.62(12)
P(1) - Fe(1) - N(3)	108.70(9)	P(3)—Fe(2)—N(4)	103.50(10)
P(2)—Fe(1)—N(3)	103.95(9)	P(4)—Fe(2)—N(4)	107.74(10)
Fe(1)—N(3)—N(4)	166.3(3)	Fe(2)—N(4)—N(3)	170.9(3)

Figure S5. ORTEP drawing of $8a \cdot 0.5C_4H_{10}O$. Thermal ellipsoids are shown at the 50% probability level. Only one of the two crystallographically independent molecules is shown, while minor disorder components, hydrogen atoms, and solvated molecules are omitted for clarity.

Fe(1)—N(1)	1.9986(19)	Fe(2)—N(2)	2.0037(19)
Fe(1)—P(1)	2.4530(7)	Fe(2)—P(3)	2.4400(8)
Fe(1)—P(2)	2.5181(7)	Fe(2)—P(4)	2.4404(7)
Fe(1)—C(39)	2.064(2)	Fe(2)—C(78)	2.050(3)
P(1)—Fe(1)—P(2)	126.39(2)	P(3)—Fe(2)—P(4)	135.61(3)
N(1)—Fe(1)—P(1)	95.90(6)	N(2)—Fe(2)—P(3)	95.05(6)
N(1)—Fe(1)—P(2)	86.92(6)	N(2)—Fe(2)—P(4)	95.07(6)
N(1)—Fe(1)—C(39)	120.04(10)	N(2)—Fe(2)—C(78)	105.64(10)
P(1)—Fe(1)—C(39)	114.14(8)	P(3)—Fe(2)—C(78)	109.88(9)
P(2)—Fe(1)—C(39)	110.01(8)	P(4)—Fe(2)—C(78)	108.65(8)

Table S6. Selected Bond Lengths (Å) and Angles (deg) for $8a \cdot 0.5C_4H_{10}O$.

Catalytic Reduction of Dinitrogen to Ammonia and Hydrazine under N₂ (1 atm).

N₂ + KC₈ + [H(OEt₂)₂][BAr^F₄]
$$\xrightarrow{\text{Catalyst}}$$
 NH₃ + N₂H₄ + H₂
1 atm $-78 \degree \text{C}, 1 \text{ h}$

Catalytic reduction of dinitrogen into ammonia and hydrazine was carried out according to a method similar to the Peters' procedure.^{S10} A typical experimental procedure using 7a is described below.

In a 50 mL Schlenk flask were placed **7a** (5.9 mg, 0.0050 mmol), KC₈ (54.1 mg, 0.400 mmol), and $[H(OEt_2)_2]BAr^{F_4}$ (385 mg, 0.380 mmol). After the mixture was cooled to -196 °C, Et₂O (5 mL) was added to the mixture by trap-to-trap distillation. The Schlenk flask was warmed to -78 °C and then was filled with N₂ (1 atm). After stirring at -78 °C for 1 h, the mixture was warmed to room temperature and further stirred at room temperature for 20 min. The amount of dihydrogen evolved in the reaction was determined by GC analysis. The reaction mixture was evaporated under reduced pressure, and the distillate was trapped in dilute H₂SO₄ solution (0.5 M, 10 mL). Aqueous solution of potassium hydroxide (30 wt%, 5 mL) was added to the residue, and the mixture was distilled into another dilute H₂SO₄ solution (0.5 M, 10 mL). The amount of NH₃ present in each of the H₂SO₄ solutions was determined by the indophenol method.^{S11} The amount of NH₂NH₂ present in each of the H₂SO₄ solutions was determined by the *p*-(dimethylamino)benzaldehyde method.^{S12}

References.

- S1. (a) Evans, D. F. J. Chem. Soc. 1959, 2003. (b) Live, D. H.; Chan, S. I. Anal. Chem. 1970, 42,
- 791. (c) Bain, G. A.; Berry, J. F. J. Chem. Educ. 2008, 85, 532.
- S2. (a) Gibson, V. C.; Spitzmesser, S. K.; White, A. J. P.; Williams, D. J. Dalton Trans. 2003, 2718.
- (b) Grüger, N.; Rodríguez, L.-I.; Wadepohl, H.; Gade, L. H. Inorg. Chem. 2013, 52, 2050.
- S3. Kern, R. J. J. Inorg. Nucl. Chem. 1962, 24, 1105.
- S4. Wietz, I. S.; Rabinovitz, M. J. Chem. Soc., Perkin Trans. 1993, 1, 117.
- S5. Brookhart, M.; Grant, B.; Volpe, Jr., A. F. Organometallics 1992, 11, 3920.
- S6. CrystalStructure 4.0: Single Crystal Structure Analysis Software; Rigaku Corp: Tokyo, Japan,
- and MSC: The Woodlands, TX, 2010.
- S7. Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.;
- Moliterni, A. G. G.; Polidorib, G.; Spagnac, R. J. Appl. Crystallogr. 1999, 32, 115-119.
- S8. Sheldrick, G. M. Acta crystallogr. 2008, A64, 112-122.
- S9. Spek, A. L. *PLATON: A Multipurpose Crystallographic Tool.* Utrecht University: Utrecht, The Netherlands, 1998.
- S10. (a) Anderson, J. S.; Rittle, J.; Peters, J. C. Nature 2013, 501, 84. (b) Creutz, S. E.; Peters, J. C.
- J. Am. Chem. Soc. 2014, 136, 1105. (c) Ung, G.; Peters, J. C. Angew. Chem. Int. Ed. 2015, 54, 532.
- S11. Weatherburn, M. W. Anal. Chem. 1967, 39, 971.
- S12. Watt, G. W.; Chrisp, J. D. Anal. Chem. 1952, 24, 2006.