Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting Information

for

A New BODIPY-Derived Ratiometric Senor of Internal Charge Transfer (ICT) Effect: Colorimetric/Fluorometric Sensing for Ag⁺

Changli Zhang,*. ^a Zhong Han,^b Mengjia Wang,^b Zhenghao Yang,^b Xueqin Ran,^c Weijiang He^{*,b}

^{*a*} School of Environmental Science, Nanjing Xiaozhuang College, Nanjing, 211171, P. R. China. E-mail: carbon314@163.com.

^b State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China. E-mail: <u>heweij69@nju.edu.cn</u>.

^c Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University (Nanjing Tech), Nanjing, 211816 (P. R. China)

Fig. S1 ¹H-NMR spectrum of BDP-ODTAC in CDCl₃.

Fig. S2 ¹³C-NMR spectrum of BDP-ODTAC in CDCl₃.

Fig. S4 ¹H-NMR spectrum of ODTAC-BDP in CDCl₃.

Fig. S5 ¹³C-NMR spectrum of ODTAC-BDP in CDCl₃.

Fig. S6 ESI-MS spectrum of ODTAC-BDP.

S1. Determination of quantum yields

Fluorescence quantum yield of **BDP-ODTAC**, **ODTAC-BDP** and Ag⁺/**BDP-ODTAC**, Ag⁺/**ODTAC-BDP** complex were determined in MeOH by using Rhodamine B solution ($\Phi_f = 0.4$, MeOH) as references. The quantum yields were calculated using Eq.1:

$$\Phi_{\rm u} = [(A_{\rm s}F_{\rm u}n^2) / (A_{\rm u}F_{\rm s}n_0^2)] \Phi_{\rm s} \qquad ({\rm Eq.1})$$

Where A_s and A_u are the absorbance of the reference and sample solution at the reference excitation wavelength, F_s and F_u are the corresponding integrated fluorescence, n and n_0 are the refractive indexes of the solvents for the sample and reference solutions. Absorbance of samples and references at their respective excitation wavelengths was controlled to be lower than 0.05.

S2. Dissociation constant determination for Ag⁺/BDP-ODTAC complex

Fluorescence measurement was carried out with the series of solution which the ratio of [Ag⁺]/[**BDP-ODTAC**] were 0~500. The dissociation constant of Ag⁺/**BDP-ODTAC ODTAC** complex were calculated using Eq.2:

$$[Ag^{+}] = K_{d} (R-R_{f}) S_{f2} / (R_{b}-R)S_{b2}$$
 (Eq.2)

Where R is the ratio of the dye's fluorescence intensities F_1 and F_2 at just two excitation wavelengths λ_1 and λ_2 , S_{f2}/S_{b2} is the ratio $F_{2free}/F_{2banding}$ at the excitation wavelength λ_2 .

Fig. S7 Ratio of emission at 675 nm upon excitation at 560 nm to that upon excitation at 600 nm, F_{560}/F_{600} , of BDP-ODTAC (5 μ M) as a function of [Ag⁺] in MeOH.

S3. Dual excitation ratiometric sensing reversibility of BDP-ODTAC for Ag⁺

Fig. S8 Ratio of emission at 675 nm upon excitation at 560 nm to that upon excitation at 600 nm, F_{560}/F_{600} , of **BDP-ODTAC** (5 μ M) induced by adding Ag⁺ (12 mM) and S²⁻ (12 mM) in sequence. λ_{em} , 675 nm. S1, **BDP-ODTAC**.

S4. Fluorescent sensing selectivity of BDP-ODTAC in methanol

Fig. S9 Emission intensity of BDP-ODTAC (5 μ M) at 587 nm determined in methanol upon adding Ag⁺ aqueous to the marked Ag⁺ concentration. Water content in final solution is lower than 4% in volume. λ_{ex} , 560 nm.

S5. Fluorescent sensing behaviors of ODTAC-BDP in methanol

Fig. S10 (a) Emission spectra of **ODTAC-BDP** (5 μ M) in CH₃OH determined upon adding different metal cations, and (b) the related emission intensity at 675 nm. λ_{ex} , 591 nm. The final concentration for Fe³⁺, Hg²⁺, Zn²⁺, Cd²⁺, Ni²⁺, Mn²⁺, Co²⁺, Cu²⁺, Ag⁺, and Pb²⁺ is 10 μ M, for K⁺, Ca²⁺, Na⁺, and Mg²⁺ is 1 mM. S2: sensor **ODTAC-BDP**

Fig. S11 (Left) Photograph of **ODTAC-BDP** (5 μ M) in methanol before and after Ag⁺ addition (2 equiv) upon irradiation with an UV lamp of 365 nm. (Right) Photograph of **ODTAC-BDP** (5 μ M) in methanol before and after Ag⁺ addition (2 equiv) in ambient condition.