Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

## **Table of Contents**

| Table S1: Crystallographic data and structure refinements for 1-3                                    | <b>S2</b>  |
|------------------------------------------------------------------------------------------------------|------------|
| Table S2: Selected bond lengths and angles of 1-3                                                    | <b>S3</b>  |
| Figure S1: View of molecular structure of 1-3·····                                                   | <b>S5</b>  |
| <b>Figure S2</b> : View of $\pi$ - $\pi$ stacking in 1-3                                             | <b>S5</b>  |
| Figure S3: $M$ vs $H/T$ plots for 1-3                                                                | <b>S5</b>  |
| Figure S4: Angular dependence measurement along XYZ rotation for 1                                   | <b>S6</b>  |
| Figure S5: Angular dependence measurement along XYZ rotation for 2                                   | <b>S6</b>  |
| Figure S6: Angular dependence measurement along XYZ rotation for 3                                   | <b>S6</b>  |
| Figure S7: Angular dependence of susceptibility at 3 K for 2 and 3                                   | <b>S7</b>  |
| Table S3: Values (cm <sup>3</sup> ·K·mol <sup>-1</sup> ) of corresponding principal axis of 1-3····· | <b>S7</b>  |
| <b>Figure S8</b> : $\chi_m T$ values along principal axes of <b>1-3</b>                              | <b>S8</b>  |
| Figure S9:Easy axis (red) direction of 1-3                                                           | <b>S8</b>  |
| Figure S10: Electrostatic potential surface of Ising ground states                                   | <b>S8</b>  |
| Figure S11: magnetic easy axis directions from electrostatic simulations                             | <b>S9</b>  |
| Table S4: Energies of the lowest spin-orbit states for 1-3·····                                      | <b>S9</b>  |
| Table S5: g tensor of the ground state for 1-3                                                       | <b>S9</b>  |
| <b>Table S6</b> : the wave function composition of ground state for 1-3                              | <b>S10</b> |
| Figure S12: Temperature dependence ac susceptibility for 1-3                                         | <b>S10</b> |
| <b>Figure S13</b> : Relaxation time ( $\tau$ ) versus temperature ( $T^{-1}$ ) plots for <b>1-3</b>  | <b>S10</b> |
| Table S7: Detailed parameters fit by Orbach and Raman process for 1-3·····                           | <b>S11</b> |
|                                                                                                      |            |

|                            | Ce-fdh (1)                | Pr-fdh (2)                | Nd-fdh (3)                |
|----------------------------|---------------------------|---------------------------|---------------------------|
| Molecular formula          | $C_{34}H_{38}O_6N_2F_9Ce$ | $C_{34}H_{38}O_6N_2F_9Pr$ | $C_{34}H_{38}O_6N_2F_9Nd$ |
| Mr                         | 881.77                    | 882.57                    | 885.91                    |
| Crystal system             | triclinic                 | Triclinic                 | Triclinic                 |
| Space group                | pl                        | pl                        | pl                        |
| <i>a</i> , Å               | 9.5494(3)                 | 9.5517(3)                 | 9.5480(4)                 |
| b, Å                       | 12.2844(6)                | 12.2277(4)                | 12.2023(5)                |
| <i>c</i> , Å               | 17.9636(5)                | 17.9577(5)                | 17.9158(7)                |
| α, °                       | 99.984(3)                 | 99.871(2)                 | 99.810(3)                 |
| <i>β</i> , °               | 104.048(3)                | 103.967(3)                | 103.867(3)                |
| γ, °                       | 101.288(3)                | 101.416(3)                | 101.481(3)                |
| <i>V</i> , Å <sup>3</sup>  | 1949.93                   | 1941.4                    | 1933.07                   |
| Ζ                          | 2                         | 2                         | 2                         |
| <i>Т</i> , К               | 180                       | 180                       | 180                       |
| <i>F</i> (000)             | 886                       | 888                       | 890                       |
| λ, Å                       | 0.71073                   | 0.71073                   | 0.71073                   |
| $R_1(I \ge 2\sigma(I))$    | 0.0433                    | 0.0336                    | 0.0453                    |
| wR <sub>2</sub> (all data) | 0.0921                    | 0. 0751                   | 0.0947                    |
| S                          | 1.052                     | 1.060                     | 1.070                     |

Table S1. Crystallographic data and structure refinements for 1-3

|               | Ce-fdh (1) | Pr-fdh (2) | Nd-fdh (3) |
|---------------|------------|------------|------------|
| Ln-O(1)       | 2.426(2)   | 2.410(2)   | 2.395(3)   |
| Ln-O(2)       | 2.433(2)   | 2.415(2)   | 2.402(3)   |
| Ln-O(3)       | 2.436(3)   | 2.409(2)   | 2.395(3)   |
| Ln-O(4)       | 2.460(3)   | 2.442(2)   | 2.429(3)   |
| Ln-O(5)       | 2.422(3)   | 2.400(2)   | 2.384(3)   |
| Ln-O(6)       | 2.437(3)   | 2.416(2)   | 2.403(3)   |
| Ln-N(1)       | 2.655(3)   | 2.631(3)   | 2.609(4)   |
| Ln-N(2)       | 2.696(3)   | 2.670(3)   | 2.652(4)   |
| O(1)- Ln-O(2) | 70.08(8)   | 70.73(8)   | 71.08(10)  |
| O(1)- Ln-O(4) | 74.75(8)   | 75.06(8)   | 75.03(10)  |
| O(1)- Ln-O(6) | 123.19(9)  | 122.43(8)  | 122.86(10) |
| O(1)- Ln-N(1) | 147.06(9)  | 147.60(8)  | 147.62(12) |
| O(1)- Ln-N(2) | 145.17(9)  | 144.53(8)  | 144.14(11) |
| O(2)- Ln-O(4) | 133.86(8)  | 134.72(8)  | 135.25(10) |
| O(2)- Ln-O(6) | 76.47(8)   | 75.72(8)   | 75.52(10)  |
| O(2)- Ln-N(1) | 87.72(8)   | 87.38(8)   | 87.26(11)  |
| O(2)- Ln-N(2) | 144.74(9)  | 144.74(8)  | 144.78(11) |
| O(3)- Ln-O(1) | 80.80(9)   | 81.43(8)   | 81.36(11)  |
| O(3)- Ln-O(2) | 76.15(8)   | 76.32(8)   | 76.29(10)  |
| O(3)- Ln-O(4) | 69.48(8)   | 69.96(7)   | 70.42(10)  |

Table S2. Selected bond lengths (Å) and angles (°) of 1-3

| O(3)- Ln-O(6) | 133.15(8) | 133.10(8) | 132.73(11) |
|---------------|-----------|-----------|------------|
| O(3)- Ln-N(1) | 70.16(9)  | 70.08(8)  | 70.04(11)  |
| O(3)- Ln-N(2) | 103.59(9) | 103.96(8) | 104.19(11) |
| O(4)- Ln-N(1) | 107.73(9) | 107.77(8) | 107.80(10) |
| O(4)- Ln-N(2) | 74.71(8)  | 74.19(8)  | 73.81(10)  |
| O(5)- Ln-O(1) | 86.94(8)  | 85.35(8)  | 84.97(11)  |
| O(5)- Ln-O(2) | 117.27(8) | 116.60(7) | 116.49(10) |
| O(5)- Ln-O(3) | 157.44(9) | 157.14(8) | 156.95(10) |
| O(5)- Ln-O(4) | 89.10(8)  | 88.67(8)  | 88.18(10)  |
| O(5)- Ln-O(6) | 69.34(8)  | 69.75(8)  | 70.31(10)  |
| O(5)- Ln-N(1) | 125.52(9) | 126.51(8) | 126.91(11) |
| O(5)- Ln-N(2) | 76.24(8)  | 76.71(8)  | 76.77(11)  |
| O(6)- Ln-O(4) | 149.47(8) | 149.33(8) | 149.02(10) |
| O(6)- Ln-N(1) | 71.47(9)  | 71.75(8)  | 71.46(11)  |
| O(6)- Ln-N(2) | 79.18(9)  | 79.64(8)  | 79.57(10)  |
| N(1)- Ln-N(2) | 60.35(9)  | 60.90(8)  | 61.16(12)  |
|               |           |           |            |



Figure S1. View of molecular structures of **1-3**. The green planes represent the planes described in the main text.



Figure S2. View of  $\pi$ - $\pi$  stacking in 1-3. The green planes represent the bpy planes described in the main text.



Figure S3. *M* versus *H*/*T* plots for **1-3** 



Figure S4. Angular dependence of magnetic susceptibility along XYZ rotation for 1



Figure S5. Angular dependence of magnetic susceptibility along XYZ rotation for 2



Figure S6. Angular dependence of magnetic susceptibility along XYZ rotation for 3



Figure S7. Angular dependence of susceptibility at 3 K under 2 kOe for a)Pr and b)Nd. Experimental (circles), fitting (solid) and *ab initio* calculation (dashed).

|              |        | 1 Ce <sup>III</sup> |                 |        | 2 Pr <sup>III</sup> |                 | 3 Nd <sup>III</sup> |         |                 |  |  |  |
|--------------|--------|---------------------|-----------------|--------|---------------------|-----------------|---------------------|---------|-----------------|--|--|--|
| <i>T /</i> K | Xzz    | Xxx                 | χ <sub>yy</sub> | Xzz    | Xxx                 | χ <sub>yy</sub> | Xzz                 | Xxx     | χ <sub>yy</sub> |  |  |  |
| 3.0          | 0.4020 | 0.0254              | 0.0122          | 0.1052 | 0.0164              | 0.0089          | 0.58299             | 0.05969 | 0.02852         |  |  |  |
| 3.2          | 0.3770 | 0.0254              | 0.0122          | 0.1026 | 0.0181              | 0.0072          | 0.54616             | 0.05717 | 0.02673         |  |  |  |
| 3.5          | 0.3450 | 0.0241              | 0.0111          | 0.1008 | 0.0173              | 0.0068          | 0.49895             | 0.05278 | 0.0258          |  |  |  |
| 4.0          | 0.3016 | 0.0228              | 0.0102          | 0.0978 | 0.0159              | 0.0053          | 0.43655             | 0.04638 | 0.02188         |  |  |  |
| 4.5          | 0.2684 | 0.0188              | 0.0085          | 0.0954 | 0.0145              | 0.0038          | 0.38961             | 0.04067 | 0.01901         |  |  |  |
| 5.0          | 0.2400 | 0.0164              | 0.0063          | 0.0937 | 0.013               | 0.0029          | 0.3489              | 0.03636 | 0.01738         |  |  |  |
| 6.0          | 0.1994 | 0.0137              | 0.0056          | 0.0911 | 0.0119              | 0.0025          | 0.29067             | 0.03038 | 0.01471         |  |  |  |
| 7.5          | 0.1599 | 0.0112              | 0.0037          | 0.089  | 0.0113              | 0.0012          | 0.23261             | 0.02441 | 0.01228         |  |  |  |
| 9.0          | 0.1335 | 0.0096              | 0.0024          | 0.0869 | 0.0101              | 0.0012          | 0.1941              | 0.02048 | 0.01047         |  |  |  |
| 11.0         | 0.1086 | 0.0076              | 0.0015          | 0.084  | 0.0096              | 0.0006          | 0.15891             | 0.01667 | 0.00889         |  |  |  |
| 12.8         | 0.0929 | 0.0061              | 0.0007          | 0.0813 | 0.0088              | 0.0005          | 0.13608             | 0.01431 | 0.00782         |  |  |  |
| 15.0         | 0.0791 | 0.0040              | 0.0006          | 0.0776 | 0.0083              | 0.0004          | 0.11626             | 0.01286 | 0.00683         |  |  |  |

Table S3. Values (cm<sup>3</sup>·K·mol<sup>-1</sup>) of corresponding principal axis of **1-3** 



Figure S8. Comparison of the  $\chi_m T$  values along easy/medium/hard axes of **1-3** from experiments (circle) and *ab initio* calculations



Figure S9. Easy axis (red) direction of **1-3**; The green plane represents the bpy plane as described in the main text.



Figure S10. Electrostatic potential surface of Ising ground states. From left to right represented  $|\pm 5/2 >$  for Ce<sup>III</sup>,  $|\pm 4 >$  for Pr<sup>III</sup>, and  $|\pm 9/2 >$  for Nd<sup>III</sup>.



Figure S11. The red and blue arrows indicate the magnetic easy axis directions of **1-3** determined from experiments and electrostatic simulations, respectively.

| Energy State (cm <sup>-1</sup> ) | 1Ce <sup>III</sup> | 2Pr <sup>III</sup> | 3Nd <sup>III</sup> |
|----------------------------------|--------------------|--------------------|--------------------|
| 1                                | 0                  | 0                  | 0                  |
| 2                                | 0                  | 45.10              | 0                  |
| 3                                | 339.63             | 234.41             | 106.42             |
| 4                                | 339.63             | 330.21             | 106.42             |
| 5                                | 685.46             | 453.23             | 166.40             |
| 6                                | 685.46             | 582.04             | 166.40             |
| 7                                |                    | 628.24             | 268.87             |
| 8                                |                    | 789.06             | 268.87             |
| 9                                |                    | 830.86             | 408.62             |
| 10                               |                    |                    | 408.62             |

Table S4. Energy levles determined by *an initio* for **1-3** 

Table S5. g tensors of the ground state for 1-3

|       | 1Ce <sup>III</sup> |      | 3Nd <sup>III</sup> |      |
|-------|--------------------|------|--------------------|------|
|       | Ab initio          | Exp  | Ab initio          | Exp  |
| $g_x$ | 0.176              | 0.28 | 0.56               | 1.04 |
| $g_y$ | 0.46               | 0.66 | 1.06               | 1.43 |
| $g_z$ | 3.79               | 3.56 | 4.78               | 4.31 |

| Та | b | le S | 56 | <b>)</b> . | W | 'ave | f | unc | etic | on | co | om | po | DSI | iti | or | 10 | )f | tw | 0 | lov | v-1 | yi | ng | ; sta | ate | es : | for | 1-, | 3 c | al | cι | ıal | ted | lł | ŊУ | ab | ) |
|----|---|------|----|------------|---|------|---|-----|------|----|----|----|----|-----|-----|----|----|----|----|---|-----|-----|----|----|-------|-----|------|-----|-----|-----|----|----|-----|-----|----|----|----|---|
|    |   |      |    |            |   |      |   |     |      |    |    |    |    |     |     |    |    |    |    |   |     |     | ~  |    |       |     |      |     |     |     |    |    |     |     |    | ~  |    |   |

|                                           | initio |           |                  |        |        |                    |        |           |  |  |  |  |  |  |
|-------------------------------------------|--------|-----------|------------------|--------|--------|--------------------|--------|-----------|--|--|--|--|--|--|
| 1Ce <sup>III</sup>                        |        |           | 2Pr <sup>I</sup> | П      |        | 3Nd <sup>III</sup> |        |           |  |  |  |  |  |  |
| Wave function Composition of ground state |        |           |                  |        |        |                    |        |           |  |  |  |  |  |  |
| M <sub>J</sub>                            | Ground | l doublet | M <sub>J</sub>   | State1 | State2 | M <sub>J</sub>     | Ground | l doublet |  |  |  |  |  |  |
| -5/2                                      | 25.38% | 66.57%    | -4               | 36.12% | 44.03% | -9/2               | 62.27% | 0.25%     |  |  |  |  |  |  |
| -3/2                                      | 1.22%  | 0.21%     | -3               | 1.51%  | 1.99%  | -7/2               | 0.21%  | 0.52%     |  |  |  |  |  |  |
| -1/2                                      | 3.38%  | 3.25%     | -2               | 8.07%  | 3.56%  | -5/2               | 12.14% | 0.95%     |  |  |  |  |  |  |
| +1/2                                      | 3.25%  | 3.38%     | -1               | 2.11%  | 0.23%  | -3/2               | 12.47% | 0.56%     |  |  |  |  |  |  |

| +3/2 | 0.21%  | 1.22%  | 0 | 4.38%  | 0.40%  | -1/2 | 8.99% | 1.64%  |
|------|--------|--------|---|--------|--------|------|-------|--------|
| +5/2 | 66.57% | 25.38% | 1 | 2.11%  | 0.23%  | +1/2 | 1.64% | 8.99%  |
|      |        |        | 2 | 8.07%  | 3.56%  | +3/2 | 0.56% | 12.47% |
|      |        |        | 3 | 1.51%  | 1.99%  | +5/2 | 0.95% | 12.14% |
|      |        |        | 4 | 36.12% | 44.03% | +7/2 | 0.52% | 0.21%  |
|      |        |        |   |        |        | +9/2 | 0.25% | 62.27% |

Composition of Ground states calculated by ab initio

 $\begin{aligned} & \text{Ce}^{\text{III}}: \ 0.92 \mid \pm 5/2 > + \ 0.014 \mid \pm 3/2 > + \ 0.066 \mid \pm 1/2 > \\ & \text{Pr}^{\text{III}}: \ 0.72 \mid \pm 4 > + \ 0.03 \mid \pm 3 > + \ 0.16 \mid \pm 2 > + \ 0.04 \mid \pm 1 > + \ 0.05 \mid 0 > \\ & \text{Nd}^{\text{III}}: \ 0.62 \mid \pm 9/2 > + \ 0.01 \mid \pm 7/2 > + \ 0.13 \mid \pm 5/2 > + \ 0.13 \mid \pm 3/2 > + \ 0.11 \mid \pm 1/2 > \end{aligned}$ 



Figure S12. Out-of-phase signal  $(\chi_m'')$  versus frequency (v) plots for 1-3.



Figure S13. Relaxation time (ln $\tau$ ) versus inverse of temperature ( $T^{-1}$ ) plots for **1Ce**(a), **2Pr**(b) and **3Nd**(c). The solid lines represent the fitting Orbach process (red) by  $\tau^{-1} = \tau_0 \exp(-U_{\text{eff}}/T)$ , and Raman process (black) by  $\tau^{-1} = CT^n$ .

Discussion:

The effective energy barriers are as shown in table below by fitting  $\ln \tau$  vs 1/T using a linear Orbach process, but much smaller than the theoretical ones depicted in the main text. Raman process fitting plots for **1** and **3** feature as identically as Orbach plot in the studied temperature and frequency range, with parameter *n* in the common range of 4~9. However, it may be more complicated for **2** with over-large standard error for parameter *C* and smaller  $R^2$  probably due to the non-Kramers nature of Pr<sup>III</sup>. Considering the much smaller  $U_{eff}$  than theoretical energy levels, we may prefer a Raman process dominated relaxation in **1** and **3**. However, seriously speaking, due to insufficient experimental data points and *ab initio* calculation errors, we must take into account the inaccuracy of the results above.

|     |                         |               |                                            |                     |       |                                        | P      |     |        |       |  |  |  |
|-----|-------------------------|---------------|--------------------------------------------|---------------------|-------|----------------------------------------|--------|-----|--------|-------|--|--|--|
|     |                         | Orbach        | $\tau^{-1}=\tau_0 \times \exp(-i\omega t)$ | $O(-U_{\rm eff}/T)$ |       | Raman $\tau^{-1}=C\times T^{\wedge n}$ |        |     |        |       |  |  |  |
|     | $\tau_0 /  { m s}^{-1}$ | $St.E.\tau_0$ | $U_{\rm eff}$ / K                          | $St.E.U_{ef}$       | $R^2$ | С                                      | St.E.C | п   | St.E.n | $R^2$ |  |  |  |
|     |                         |               |                                            | f                   |       |                                        |        |     |        |       |  |  |  |
| 1Ce | 1.8E-7                  | 0.14          | 33.3                                       | 0.74                | 0.997 | 0.40                                   | 0.05   | 6.0 | 0.07   | 0.999 |  |  |  |
| 2Pr | 3.3E-7                  | 0.17          | 22.5                                       | 0.69                | 0.991 | 25.1                                   | 15.0   | 4.4 | 0.36   | 0.963 |  |  |  |
| 3Nd | 9.2E-8                  | 0.07          | 28.8                                       | 0.28                | 0.999 | 0.93                                   | 0.12   | 6.6 | 0.08   | 0.999 |  |  |  |

Table S7. Detailed parameters fit by Orbach and Raman process for 1-3

(*St.E.* abbreviated for Standard Error)