Supplementary Material for

Facile synthesis of carbon quantum dots loaded with mesoporous g-C₃N₄ for synergistic absorption and visible light photodegradation of fluoroquinolone antibiotics

Yingfei Wang,^a Fengliang Wang,^a Yiping Feng,^a Zhijie Xie,^a Qianxin Zhang,^a Xiaoyu Jin,^a Haijin Liu,^b Yang Liu,^c Wenying Lv,^a and Guoguang Liu*^a

^a School of Environmental Science and Engineering, and Institute of Environmental

Health and Pollution Control, Guangdong University of Technology, Guangzhou,

510006, China

^b School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Xinxiang 453007, P. R. China.

^c Faculty of Environmental & Biological Engineering, Guangdong University of

Petrochemical Technology, Maoming, 525000, China

* Corresponding Author: Guoguang Liu

E-mail: liugg615@163.com

Phone: +86-20-39322547

Fax: +86-20-39322548

Address: School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Post Code: 510006, China

Test S1 Analysis methods

The concentrations of FQs in solution were analyzed using LC-20A high performance liquid chromatography (HPLC) (Shimadzu, Japan). The separation of FOs was performed with a Zorbax Eclipse XDB-C18 reversed phase column (4.6 x 150 mm, 5 µm). An isocratic elution, consisting of methanol and water, containing 0.2 % (v/v) formic acid at a flow rate of 1.0 mL/min. was used. The mobile phase composition and detection wavelengths can be found in Table S1. The injection volume was 20 µL. High-accuracy mass analyses of the intermediate byproducts were performed by HPLC/MS/MS (Agilent Technologies, USA) coupled with an Agilent 1100 series HPLC combined with a 6410 triple quadrupole mass spectrometer that used an Agilent SB-C18 column (5 µm, 4.6 x 150 mm). Elution was performed at a flow rate of 0.25 mL/min. With H₂O containing 0.1 % (v/v) formic acid as eluent A, and acetonitrile as eluent B; employing a linear gradient of from 10 % B to 60 % B in 15 min, and 60% B to 100% B in the next 2 min. Mass spectrometry analysis was conducted in positive mode using an electrospray ionization (ESI) source. The optimized parameters were as follows: fragmentor of 125 V; capillary voltage of 3.5 kV; desolvation gas (nitrogen, P 99.99 %), flow of 10 L/min; temperature of 350 °C; nebulizer pressure of 40 psi; and scan range in full scan mode (m/z range 100-600). Once a potential product was identified, a product ion scan MS/MS was performed for the elucidation of the structure.

Fluoroquinolones	Mobile phase	Detection wavelength	
	H_2O (0.2% formic acid)	Me(OH)	(nm)
OFX	70%	30%	293
NOR	70%	30%	278
CIP	70%	30%	278
ENR	72%	28%	278
LOM	65%	35%	287
FLE	70%	30%	286

Table S1. Primary properties of water samples for FQs and substructural analogs.

mpg-C ₃ N ₄ /CQDs							
Photocatalysts	X (eV)	E _c (eV)	Eg (eV)	E _{VB} (eV)	E _{CB} (eV)		
g-C ₃ N ₄	4.72	4.50	2.66	1.55	-1.11		
mpg-C ₃ N ₄	4.72	4.50	2.58	1.51	-1.07		
mpg-C ₃ N ₄ /CQDs	4.72	4.50	2.54	1.49	-1.05		

Table S2. Energy band structure parameters of g- C_3N_4 , mpg- C_3N_4 , and

Photocatalysts	Qe (mg/g)	k (g/mg min)	R ²
mpg-C ₃ N ₄	9.3545	0.0027	0.9982
mpg-C ₃ N ₄ /CQDs	8.0128	0.0047	0.9984

Table S3. Absorption pseudo-second order model of OFX onto the mpg- C_3N_4 and

mpg-C₃N₄/CQDs

Number	Retention Time/min	ESI(+) MS (m/z)	ESI(+) MS/MS (m/z)	Supposed Structure
OFX	12.3	362	300,146	
P1	7.2	260	243,147,129	
P2	7.5	304	289,260	
Р3	7.9	312	272,244,228	Б N N OH NH2
Р4	8.1	348	327,302,261	
Р5	8.7	278	233,208	

Table S4. Mass spectrometry pieces information and proposed structure of

photocatalytic products and OFX.

Atom	2FED ² _{HOMO}	FED ² _{HOMO} +	Point	Atom	2FED ² _{HOMO}	FED ² _{HOMO} +	Point
(number)		FED ² _{LUMO}	charge	(number)		FED ² LUMO	charge
C(1)	0.0146	0.0159	0.1299	C(23)	0.0025	0.0601	-0.4170
C(2)	0.0471	0.0438	0.2014	C(24)	0.0010	0.3289	0.3002
C(3)	0.0423	0.0461	0.1788	F(26)	0.0028	0.0106	-0.2450
C(4)	0.0124	0.0139	0.1322	N(27)	0.0019	0.1138	-0.4845
N(9)	0.2045	0.2053	-0.3702	C(28)	0.0032	0.0135	0.0568
N(10)	0.1718	0.1755	-0.4699	O(29)	0.0039	0.0571	-0.3896
C(15)	0.0103	0.0262	0.0937	C(30)	0.0001	0.0229	0.4242
C(16)	0.0559	0.1388	0.1598	O(31)	0.0005	0.0255	-0.3707
C(17)	0.0218	0.0281	0.3547	O(32)	0.0001	0.0045	-0.0899
C(18)	0.0208	0.0266	-0.2351	C(34)	0.0063	0.0065	0.1363
C(19)	0.0034	0.0575	0.0249	C(39)	0.0003	0.0063	0.1557
C(20)	0.0190	0.0752	0.2774	C(43)	0.0004	0.0200	0.2918
C(21)	0.0013	0.0595	0.3725	O(46)	0.0157	0.0287	-0.3717

 Table S5. Frontier electron densities on atoms of OFX calculated by using Gaussian

09 program at the B3LYP/6-311+g(d, p) level.

FIGURES

Fig. S1. Rotary photochemical reactor.

Fig. S2. Optimized structure and atomic numbering of OFX.

Fig. S4. FT-IR spectra of $g-C_3N_4$, mpg- C_3N_4 , and mpg- C_3N_4 /CQDs.

Fig. S5. XPS survey spectra of mpg- C_3N_4 and mpg- C_3N_4 /CQDs.

Fig. S6. (a) Effect of OFX initial concentration on the photocatalytic degradation kinetics of OFX; (b) loading amount of CQDs.

Fig. S7. Escherichia coli inhibition halo at different times of mpg- $C_3N_4/CQDs$ photocatalytic reaction.