Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Synthesis and magneto-structural studies on a new family of carbonato bridged 3d-4f complexes featuring a [CoII3LnIII3(CO3)] (Ln = La, Gd, Tb, Dy and Ho) core: slow magnetic relaxation displayed by the cobalt(II)-dysprosium(III) analogue

Mithun Chandra Majee,^{*a*,‡} Sk Md Towsif Abtab,^{*a*,‡} Dhrubajyoti Mondal,^{*a*} Manoranjan Maity,^{*a*} Marek Weselski,^{*b*} Maciej Witwicki,^{*b*} Alina Bieńko,^{*b*} Michał Antkowiak,^{*c*} Grzegorz Kamieniarz,^{*c*} and Muktimoy Chaudhury^{**a*}

^aDepartment of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, INDIA

^bFaculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland ^cFaculty of Physics, A. Mickiewicz University, ul. Umultowska 85, PL-61-614 Poznań, Poland [‡]Mithun Chandra Majee and Sk Md Towsif Abtab contributed equally in this paper

CONTENT:

1. Table S1 Selected Bond Distances (Å) and Angles (deg) for 1 – 5	
2 . Table S2 Summary of Magnetic Data for the Complexes $1 - 5$	S3
3 . DFT computations	
4. Table S3 Exchange coupling constants, total energies of spin states used in these ca	lculations and
expectations values of total square spin operators	S6
5 . Table S4 Löwdin populations computed at the UB3LYP theory level	S6
6. Figure S1–S4 Partially labeled POV-Ray (in ball and stick form) diagram showing the labeling scheme for the complexes 1, 3, 4 and 5	the atom- S7-S9
7. Figure S5 Thermal dependence of inverse magnetic susceptibility for 1-5	
9 Figure S6 HH and C H π interactions between the cations of complex 2	generating an

8. Figure S6 H····H and C–H···· π interactions between the cations of complex 2 generating an oligumeric structure...... S9

Bond Distances (Å)						
Parameters	1	2	3	4	5	
Ln1—O3	2.448(8)	2.334(10)	2.321(8)	2.290(9)	2.296(8)	
Ln1—O1	2.473(8)	2.353(10)	2.336(8)	2.305(9)	2.320(8)	
Ln1—O7 ⁱ	2.479(7)	2.358(9)	2.362(8)	2.347(8)	2.338(8)	
Ln1—O7	2.465(7)	2.367(10)	2.358(8)	2.326(8)	2.322(8)	
Ln1—O4	2.577(9)	2.465(11)	2.467(8)	2.446(10)	2.440(9)	
Ln1—O9	2.575(10)	2.468(11)	2.476(8)	2.443(11)	2.437(9)	
Ln1—O8	2.569(7)	2.470(9)	2.453(7)	2.442(9)	2.447(9)	
Ln1—O8 ⁱ	2.648(7)	2.569(10)	2.558(8)	2.555(9)	2.55(1)	
Ln1—O2	2.686(8)	2.64(1)	2.634(8)	2.63(1)	2.664(9)	
Co1—O5	1.970(8)	1.943(9)	1.947(7)	1.926(10)	1.956(8)	
Co1—O3 ⁱⁱ	1.991(8)	1.978(10)	1.962(8)	1.976(9)	1.978(8)	
Co1-01	1.992(8)	1.982(11)	1.985(8)	1.984(9)	1.990(8)	
Co1—O7	2.157(9)	2.132(13)	2.131(9)	2.125(11)	2.127(10)	
Co1—N1	2.135(10)	2.136(12)	2.12(1)	2.118(13)	2.121(10)	
		Bond angle	es (deg)			
03—Ln1—O1	135.0(3)	132.5(4)	132.8(3)	131.9(4)	131.4(3)	
O3—Ln1—O7 ⁱ	71.7(3)	73.5(4)	73.4(3)	74.4(4)	74.0(3)	
O1—Ln1—O7 ⁱ	150.7(3)	150.5(4)	150.4(3)	150.2(3)	151.0(3)	
O3—Ln1—O7	153.6(3)	153.4(4)	152.9(3)	153.1(3)	153.2(3)	
01—Ln1—07	69.1(3)	71.2(4)	71.5(3)	71.9(4)	72.3(3)	
O7 ⁱ —Ln1—O7	82.5(4)	80.7(6)	80.4(4)	79.7(5)	80.2(5)	
O3—Ln1—O4	62.4(3)	65.6(3)	66.2(3)	65.9(3)	66.7(3)	
01—Ln1—04	85.7(3)	82.1(3)	81.9(3)	81.7(3)	80.7(3)	
$O7^{i}$ —Ln1—O4	122.6(3)	126.5(4)	126.7(3)	127.1(3)	127.3(3)	
07—Ln1—O4	141.4(3)	138.7(4)	138.4(3)	138.6(3)	138.0(3)	
O3—Ln1—O9	89.8(3)	89.3(3)	89.3(3)	89.4(3)	89.1(3)	
01—Ln1—09	94.2(3)	92.1(3)	92.1(3)	91.8(3)	91.8(3)	
$O7^{i}$ —Ln1—O9	70.8(3)	72.2(4)	72.3(3)	72.4(3)	72.7(3)	
07—Ln1—09	75.9(3)	76.4(4)	76.3(3)	76.1(3)	76.1(3)	
04—Ln1—09	136.9(3)	136.9(4)	137.3(3)	137.2(4)	137.3(3)	
03—Ln1—08	123.6(3)	124.8(4)	124.5(3)	124.2(4)	125.7(3)	
01—Ln1—08	77.6(3)	78.0(4)	78.1(3)	78.8(4)	77.8(3)	
$O7^{i}$ —Ln1—O8	97.6(3)	98.6(4)	98.5(3)	98.0(3)	98.9(4)	
07—Ln1—08	64.8(3)	65.1(4)	65.4(3)	65.9(3)	65.1(3)	
04—Ln1—08	81.9(3)	79.1(4)	78.4(3)	78.3(3)	78.4(3)	
09—Ln1—08	140.2(3)	141.4(4)	141.7(3)	142.0(3)	141.2(3)	
O3—Ln1—O8 ⁱ	77.0(3)	77.1(4)	76.9(3)	77.5(4)	76.8(3)	
$O1-Ln1-O8^{i}$	126.0(3)	127.9(4)	127.8(3)	127.9(4)	128.9(3)	
$ 07^{i}$ —Ln1—O8 ⁱ	63.4(3)	63.6(3)	63.8(3)	63.8(3)	63.2(3)	
$07-Ln1-08^{i}$	97.2(3)	97.5(4)	97.5(3)	97.2(3)	98.1(3)	
O4—Ln1—O8 ⁱ	73.9(3)	74.4(4)	74.1(3)	74.3(3)	74.4(3)	
O9—Ln1—O8 ⁱ	134.2(3)	135.8(3)	136.0(3)	136.2(3)	135.8(3)	

Table S1 Selected Bond Distances (Å) and Angles (deg) for 1-5

$O8-Ln1-O8^{i}$	50.7(4)	52.5(6)	52.3(4)	51.6(5)	53.9(5)
O3—Ln1—O2	78.9(2)	74.6(3)	74.2(3)	73.8(3)	73.3(3)
01—Ln1—O2 6	60.7(3)	62.0(4)	62.8(3)	62.2(4)	62.2(3)
07 ⁱ —Ln1—O2	130.7(3)	129.0(4)	128.3(3)	129.0(4)	128.6(3)
07—Ln1—O2	115.5(3)	118.8(4)	119.4(3)	119.5(3)	119.7(3)
O4—Ln1—O2	72.2(3)	71.1(4)	71.6(3)	71.2(4)	71.1(3)
O9—Ln1—O2	70.4(3)	68.6(4)	68.1(3)	68.5(4)	68.3(3)
08—Ln1—O2	131.7(3)	132.4(4)	133.1(3)	132.9(4)	132.4(3)
08 ⁱ —Ln1—O2	144.7(3)	142.0(4)	141.8(3)	141.8(4)	141.0(3)
O5—Co1—O3 ⁱⁱ	110.1(3)	109.5(4)	110.1(3)	108.9(5)	108.8(4)
05—Co1—O1	126.3(4)	127.1(4)	127.2(4)	128.0(5)	127.1(4)
03 ⁱⁱ —Co1—O1	122.5(4)	122.2(5)	121.4(4)	121.7(5)	122.6(4)
05—Co1—O7 8	87.1(3)	89.4(4)	89.1(3)	89.9(4)	89.7(4)
03 ⁱⁱ —Co1—O7 8	88.1(3)	86.1(4)	86.0(3)	86.2(3)	85.5(3)
01—Co1—O7 8	84.8(3)	83.8(4)	83.5(3)	82.9(3)	83.3(3)
05—Co1—N1 9	94.4(4)	94.7(5)	94.7(4)	94.8(5)	95.3(4)
O3 ⁱⁱ —Co1—N1	92.4(4)	92.8(5)	93.1(4)	93.6(4)	93.6(3)
01—Co1—N1 9	93.4(4)	93.4(5)	93.7(4)	93.1(4)	93.1(4)
07—Co1—N1	178.1(4)	175.9(5)	176.1(4)	175.1(4)	174.9(4)

Table S2 Summary of Magnetic Data for the Complex 1 – 5

Complex [Co ^{II} 3Ln ^{III} 3]	$\frac{^{2s+1}L_J}{(Ln^{III})}$	χ _M Tcalcd (cm ³ mole ⁻¹ K)	χ _M T at 300k (cm ³ mole ⁻¹ K)	Wiss const [θ](K)	Magnetization at 2 K and 5 T (<i>N</i> β)
$Co_3La_3(1)$	${}^{1}S_{0}$	5.63	6.41	-4.92	2.10
$Co_{3}Gd_{3}(2)$	${}^{8}S_{7/2}$	29.25	29.01	+0.12	25.11
$Co_{3}Tb_{3}(3)$	${}^{7}F_{6}$	41.06	38.3	-1.58	18.6
$Co_3Dy_3(4)$	⁶ H _{15/2}	42.9	44.4	-0.17	19.6
$Co_{3}Ho_{3}(5)$	⁵ I ₈	42.7	44.3	-2.32	16.8

DFT computations

Although in this section of the Supporting Information results for all the members of the $Co^{II}_{3}Ln^{III}_{3}$ series are reported, one has to keep in mind that for $Co^{II}_{3}Tb^{III}_{3}$, $Co^{II}_{3}Dy^{III}_{3}$ and $Co^{II}_{3}Ho^{III}_{3}$ strong magnetic anisotropy on the Ln sites is induced by the crystal field splitting of their atomic J multiplets and to describe this effect multiconfigurational *ab initio* methods should be used rather than DFT.

To estimate exchange coupling constants the Heisenberg-Dirac-van Vleck Hamiltonian was used:

$$\hat{H} = -2J\sum J_{ij}\hat{S}_i\hat{S}_j \qquad (1)$$

where \hat{S} are the local spin operators for each paramagnetic centre and *J* are the Heisenberg exchange coupling constants between two paramagnetic centres. Except for Co^{II}₃La^{III}₃, in the Co^{II}₃Ln^{III}₃ series three different magnetic exchange interactions can be distinguished:

that is $Co^{II} - Co^{II}$, $Co^{II} - Ln^{III}$ and $Ln^{III} - Ln^{III}$. Hence, the Heisenberg-Dirac-van Vleck Hamiltonian can be rewritten as:

$$\hat{H} = -2J_{\text{Ln-Ln}} \left(\hat{S}_{\text{Ln1}} \hat{S}_{\text{Ln2}} + \hat{S}_{\text{Ln1}} \hat{S}_{\text{Ln3}} + \hat{S}_{\text{Ln2}} \hat{S}_{\text{Ln3}} \right) -2J_{\text{Ln-Co}} \left(\hat{S}_{\text{Ln1}} \hat{S}_{\text{Co1}} + \hat{S}_{\text{Ln1}} \hat{S}_{\text{Co3}} + \hat{S}_{\text{Ln2}} \hat{S}_{\text{Co1}} + \hat{S}_{\text{Ln2}} \hat{S}_{\text{Co2}} + \hat{S}_{\text{Ln3}} \hat{S}_{\text{Co2}} + \hat{S}_{\text{Ln3}} \hat{S}_{\text{Co3}} \right)$$
(2)
$$-2J_{\text{Co-Co}} \left(\hat{S}_{\text{Co1}} \hat{S}_{\text{Co2}} + \hat{S}_{\text{Co1}} \hat{S}_{\text{Co3}} + \hat{S}_{\text{Co2}} \hat{S}_{\text{Co3}} \right)$$

For $Co^{II}_{3}La^{III}_{3}$, which can be considered a trinuclear Co^{II} cluster from the magnetochemical point of view, Equation 1 can be rewritten as:

$$\hat{H} = -2J_{\rm Co-Co} \left(\hat{S}_{\rm Co1} \hat{S}_{\rm Co2} + \hat{S}_{\rm Co1} \hat{S}_{\rm Co3} + \hat{S}_{\rm Co2} \hat{S}_{\rm Co3} \right) (3)$$

Hence, the theoretical investigation of $Co^{II}_{3}La^{III}_{3}$ implies to consider only two different spin configurations that correspond to the HS configuration and to one BS solutions (spin flipped on only one Co^{II}). Applying the Hamiltonian from Eq. 3 to both of these single determinant wavefunctions gives the following expression of the energies:

$$E_{HS} = -13 \frac{1}{2} J_{Co-Co}$$
(4)
$$E_{BS} = 4 \frac{1}{2} J_{Co-Co}$$
(5)

The analytic expression of the exchange coupling constant J_{Co-Co} is then derived from Eqs. 4 and 5:

$$J_{Co-Co} = -\frac{E_{HS} - E_{BS}}{18}$$
(6)

The J_{Co-Ln} and J_{Ln-Ln} constants were calculated likewise J_{Co-Co} , but in order to simplify the calculations J_{Co-Co} in Eq. 2 was assumed to equal to the one obtained from Eq. 6. In consequence, J_{Co-Ln} and J_{Ln-Ln} were calculated from three different spin configurations:

Applying the Hamiltonian from Eq. 2 to the three of the single determinant wavefunctions shown above gives the following expression of the energies:

$$E_{HS} = -3J_{\text{Ln}-\text{Ln}} \frac{N_{\text{Ln}}^{2}}{2} - 3J_{\text{Co}-\text{Ln}} N_{\text{Ln}} N_{Co} - 3J_{\text{Co}-\text{Co}} \frac{N_{\text{Co}}^{2}}{2}$$
(7)

$$E_{BS1} = -3J_{\text{Ln}-\text{Ln}} \frac{N_{\text{Ln}}^{2}}{2} + 3J_{\text{Co}-\text{Ln}} N_{\text{Ln}} N_{Co} - 3J_{\text{Co}-\text{Co}} \frac{N_{\text{Co}}^{2}}{2}$$
(8)

$$E_{BS2} = J_{\text{Ln}-\text{Ln}} \frac{N_{\text{Ln}}^{2}}{2} + J_{\text{Co}-\text{Ln}} N_{\text{Ln}} N_{Co} + J_{\text{Co}-\text{Co}} \frac{N_{\text{Co}}^{2}}{2}$$
(9)

where N_i is the number of unpaired electrons on the metal site. From Eqs. 7-9 the expressions of J_{Co-Ln} and J_{Ln-Ln} can be obtained:

$$J_{\rm Co-Ln} = -\frac{E_{HS} - E_{BS1}}{6N_{\rm Ln}N_{Co}}$$
(10)

$$J_{\rm Ln-Ln} = -\frac{E_{HS} - E_{BS2} + 4J_{Co-Ln}N_{Co}N_{\rm Ln} + 2J_{Co-Co}N_{Co}^{2}}{2N_{\rm Ln}^{2}}$$
(11)

Table S3 Exchange coupling constants, total energies of spin states used in these calculations

 and expectations values of total square spin operators

		1		2	
		B3LYP	TPSS0	B3LYP	TPSS0
HS	E [a.u.]	-35512.802051	-35511.133148	-44150.912498	-44148.849325
	<i><s2></s2></i>	24.7701	24.7701	240.0366	240.0377
BS1	E [a.u.]	-35512.802080	-35511.133199	-44150.912440	-44148.849266
	<i><s2></s2></i>	6.77	6.77	51.0333	51.0364
BS2	E [a.u.]	-	-	-44150.912485	-44148.849311
	< <i>S</i> 2>	-	-	40.0342	40.0368
$J_{Ln-Ln} [cm^{-1}]$		-	-	-0.01	-0.03
$J_{Co-Ln} [cm^{-1}]$		-	-	0.10	0.10
$J_{Co-Co} [cm^{-1}]$		-0.35	-0.62	-	-

Table S4 Löwdin populations computed at the **UB3LYP** theory level

spin population on	1	2
Со	2.655	2.653
Ln	0.001	7.015
oxygen atoms of OH-	0.037	0.034
hydroxyl oxygen atoms of [L] ^{3–}	0.057	0.059
oxygen atoms of CO ₃ ²⁻	0	-0.004

Fig. S1 Partially labeled POV-Ray (in ball and stick form) diagram showing the atomlabeling scheme for the complex 1

Fig. S2 Partially labeled POV-Ray (in ball and stick form) diagram showing the atomlabeling scheme for the complex 3

Fig. S3 Partially labeled POV-Ray (in ball and stick form) diagram showing the atomlabeling scheme for the complex 4

Fig. S4 Partially labeled POV-Ray (in ball and stick form) diagram showing the atomlabeling scheme for the complex **5**

Fig. S5 Thermal dependence of inverse magnetic susceptibility for (\circ) - 1, (\circ) - 2, (\circ) - 3, (\circ) - 4, (\circ) - 5.

Fig. S6 H···H and C–H··· π interactions between the cations of complex 2 generating an oligumeric structure. Solvent molecules are omitted for clarity.