Electronic Supplementary Information for the paper

Entitled

Chlorogermylenes and -Stannylenes Stabilized by Diimidosulfinate Ligands: Synthesis, Structures, and Reactivity

Norio Nakata*, Narimi Hosoda, Shintaro Takahashi, and Akihiko Ishii

Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan

Table of Contents

- Figure S1. ¹H NMR chart of chlorogermylene 1 (400 MHz, C₆D₆, 300 K).
- Figure S2. ${}^{13}C{}^{1}H$ NMR chart of chlorogermylene 1 (101 MHz, C₆D₆, 300 K).
- Figure S3. ¹H NMR chart of chlorostannylene 2 (400 MHz, C₆D₆, 300 K).
- Figure S4. ¹³C{¹H} NMR chart of chlorostannylene 2 (101 MHz, C₆D₆, 300 K).
- Figure S5. ¹¹⁹Sn $\{^{1}H\}$ NMR chart of chlorostannylene 2 (186 MHz, C₆D₆, 300 K).
- Figure S6. ¹H NMR chart of chlorogermylene-thione **3** (400 MHz, C₆D₆, 300 K).
- Figure S7. ¹³C{¹H} NMR chart of chlorogermylene-thione **3** (101 MHz, C₆D₆, 300 K).
- **Figure S8.** ¹H NMR chart of chlorogermylene-selone **4** (400 MHz, C₆D₆, 300 K).
- **Figure S9**. ${}^{13}C{}^{1}H$ NMR chart of chlorogermylene-selone **4** (101 MHz, C₆D₆, 300 K).
- Figure S10. ⁷⁷Se{¹H} NMR chart of chlorogermylene-selone 4 (95.4 MHz, C₆D₆, 300 K).

Figure S11. ¹H NMR chart of 1,3,2,4-dithiadistannetane 5 (400 MHz, C₆D₆, 300 K).

- **Figure S12**. ¹³C{¹H} NMR chart of 1,3,2,4-dithiadistannetane **5** (101 MHz, C₆D₆, 300 K).
- **Figure S13**. ¹¹⁹Sn{¹H} NMR chart of 1,3,2,4-dithiadistannetane **5** (186 MHz, C₆D₆, 300 K).
- **Figure S14.** ¹H NMR chart of 1,3,2,4-diselenadistannetane **6** (400 MHz, C₆D₆, 300 K).
- Figure S15. ¹³C $\{^{1}H\}$ NMR chart of 1,3,2,4-diselenadistannetane 6 (101 MHz, C₆D₆, 300 K).
- Figure S16. ⁷⁷Se $\{^{1}H\}$ NMR chart of 1,3,2,4-diselenadistannetane 6 (95.4 MHz, C₆D₆, 300 K).
- **Figure S17**. ¹¹⁹Sn{¹H} NMR chart of 1,3,2,4-diselenadistannetane 6 (186 MHz, C₆D₆, 300 K).
- Figure S18. ¹H NMR chart of 1,3-bis(chlorogermylene) 7 (400 MHz, C₆D₆, 300 K).
- **Figure S19**. ¹³C{¹H} NMR chart of 1,3-bis(chlorogermylene) **7** (101 MHz, C₆D₆, 300 K).
- Figure S20. ¹H NMR chart of 1,3-bis(chlorostannylene) 8 (400 MHz, C₆D₆, 300 K).
- Figure S21. ¹³C $\{^{1}H\}$ NMR chart of 1,3-bis(chlorostannylene) 8 (101 MHz, C₆D₆, 300 K).
- **Figure S22**. ¹¹⁹Sn{¹H} NMR chart of 1,3-bis(chlorostannylene) **8** (186 MHz, C₆D₆, 300 K).
- Figure S23. ¹H NMR chart of intermediate X (500 MHz, C₆D₆, 300 K).
- Figure S24. ¹¹⁹Sn $\{^{1}H\}$ NMR chart of intermediate X (186 MHz, C₆D₆, 300 K).
- Table S1. Crystallographic Data and Details of Refinement for 1-8.

Computational details

- Figure S25. Optimized geometry of cis-3 [B3LYP/6-31G(d) level].
- Figure S26. Optimized geometry of trans-3 [B3LYP/6-31G(d) level].

Figure S1. ¹H NMR chart of chlorogermylene 1 (400 MHz, C₆D₆, 300 K).

Figure S2. ${}^{13}C{}^{1}H$ NMR chart of chlorogermylene 1 (101 MHz, C₆D₆, 300 K).

Figure S3. ¹H NMR chart of chlorostannylene 2 (400 MHz, C₆D₆, 300 K).

Figure S4. ${}^{13}C{}^{1}H$ NMR chart of chlorostannylene 2 (101 MHz, C₆D₆, 300 K).

210 200 190 f1 (ppm)

Figure S5. $^{119}Sn\{^{1}H\}$ NMR chart of chlorostannylene 2 (186 MHz, C6D6, 300 K).

Figure S6. ¹H NMR chart of chlorogermylene-thione 3 (400 MHz, C₆D₆, 300 K).

Figure S7. ${}^{13}C{}^{1}H$ NMR chart of chlorogermylene-thione 3 (101 MHz, C₆D₆, 300 K).

Figure S8. ¹H NMR chart of chlorogermylene-selone 4 (400 MHz, C₆D₆, 300 K).

Figure S9. ${}^{13}C{}^{1}H$ NMR chart of chlorogermylene-selone 4 (101 MHz, C₆D₆, 300 K).

Figure S10. 77 Se $\{^{1}$ H $\}$ NMR chart of chlorogermylene-selone 4 (95.4 MHz, C₆D₆, 300 K).

Figure S11. ¹H NMR chart of 1,3,2,4-dithiadistannetane 5 (400 MHz, C₆D₆, 300 K).

Figure S12. ¹³C $\{^{1}H\}$ NMR chart of 1,3,2,4-dithiadistannetane 5 (101 MHz, C₆D₆, 300 K).

Figure S13. 119 Sn{ 1 H} NMR chart of 1,3,2,4-dithiadistannetane 5 (186 MHz, C₆D₆, 300 K).

Figure S14. ¹H NMR chart of 1,3,2,4-diselenadistannetane 6 (400 MHz, C₆D₆, 300 K).

Figure S15. ¹³C $\{^{1}H\}$ NMR chart of 1,3,2,4-diselenadistannetane 6 (101 MHz, C₆D₆, 300 K).

Figure S16. ⁷⁷Se $\{^{1}H\}$ NMR chart of 1,3,2,4-diselenadistanetane 6 (95.4 MHz, C₆D₆, 300 K).

Figure S17. ¹¹⁹Sn{¹H} NMR chart of 1,3,2,4-diselenadistannetane 6 (186 MHz, C₆D₆, 300 K).

Figure S18. ¹H NMR chart of 1,3-bis(chlorogermylene) 3 (400 MHz, C₆D₆, 300 K).

Figure S19. ¹³C $\{^{1}H\}$ NMR chart of 1,3-bis(chlorogermylene) 3 (101 MHz, C₆D₆, 300 K).

Figure S20. ¹H NMR chart of 1,3-bis(chlorostannylene) 4 (400 MHz, C₆D₆, 300 K).

Figure S21. ${}^{13}C{}^{1}H$ NMR chart of 1,3-bis(chlorostannylene) 4 (101 MHz, C₆D₆, 300 K).

Figure S22. ¹¹⁹Sn{¹H} NMR chart of 1,3-bis(chlorostannylene) 4 (186 MHz, C₆D₆, 300 K).

9.0 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 8.5

Figure S23. ¹H NMR chart of intermediate X (500 MHz, C₆D₆, 300 K).

10 5 -70 -85 ò -5 -10 -15 -20 -25 -30 -35 -45 -55 -60 -65 -75 -80 -40 f1 (ppm) -50

Figure S24. ¹¹⁹Sn{¹H} NMR chart of intermediate X (186 MHz, C₆D₆, 300 K).

	1	2	3	4
Formula	C14H23ClGeN2S	C ₁₄ H ₂₃ ClN ₂ SSn	$C_{14}H_{23}ClGeN_2S_2$	C14H23ClGeN2SSe
Formula weight	359.44	405.54	391.50	438.40
Color	pale yellow	pale yellow	pale yellow	yellow
Crystal size / mm	$0.06 \times 0.06 \times 0.05$	$0.09 \times 0.07 \times 0.06$	$0.22 \times 0.21 \times 0.21$	$0.16 \times 0.09 \times 0.09$
Temperature / K	100	100	100	100
Crystal system	monoclinic	orthorhombic	orthorhombic	monoclinic
Space group	$P2_{1}/c$	Pnma	$P2_{1}2_{1}2_{1}$	$P2_{1}/n$
a /Å	13.004(4)	11.9462(12)	10.9327(8)	17.7011(14)
b /Å	11.372(4)	12.6983(13)	12.4204(9)	11.7652(9)
c /Å	11.580(4)	11.6365(11)	13.7243(9)	18.2391(14)
<i>a</i> / deg.	90	90	90	90
<i>b</i> / deg.	94.447(4)	90	90	99.3550(10)
<i>g</i> / deg.	90	90	90	90
$V/\text{\AA}^3$	1707.3(9)	1765.2(3)	1863.6(2)	3747.9(5)
Ζ	4	4	4	8
$D_{ m calcd}$ / g cm ⁻³	1.398	1.526	1.395	1.554
No. of unique data	3110	1903	3824	7714
No. of parameters	178	103	187	373
No. of restraints	0	0	0	0
$R_1 (I > 2s(I))$	0.0710	0.0197	0.0290	0.0216
wR_2 (all data)	0.1994	0.0534	0.0735	0.0482
GOF	1.075	1.013	1.048	1.031

 Table S1. Crystallographic data and details of refinement for 1–8.

	5	6	7	8
Formula	$C_{34}H_{52}Cl_2N_4S_4Sn_2$	$C_{34}H_{52}Cl_2N_4S_2Se_4Sn_2$	$C_{21}H_{38}Cl_2Ge_2N_4S_2Si_3$	$C_{21}H_{38}Cl_2N_4S_2Si_3Sn_2$
Formula weight	953.32	1047.12	711.02	803.22
Color	Yellow	Yellow	colorless	colorless
Crystal size / mm	$0.04 \times 0.04 \times 0.03$	0.09×0.08× 0.07	$0.09 \times 0.08 \times 0.05$	$0.21 \times 0.14 \times 0.13$
Temperature / K	100	100	100	100
Crystal system	Monoclinic	Monoclinic	triclinic	triclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	<i>P</i> -1	<i>P</i> -1
a /Å	12.9068(10)	13.0087(12)	10.372(2)	10.5769(19)
b /Å	11.6435(9)	11.6396(10)	10.737(2)	10.7781(19)
c/Å	11.1347(11)	14.1127(13)	16.616(4)	16.372(3)
<i>a</i> / deg.	90	90	106.556(3)	106.544(2)
<i>b</i> / deg.	95.8210(10)	96.0450(10)	97.759(3)	92.127(2)
g / deg.	90	90	108.288(2)	107.936(2)
V/Å ³	2113.2(3)	2125.0(3)	1632.1(6)	1686.2(5)
Z	2	2	2	2
$D_{\rm calcd}$ / g cm ⁻³	1.498	1.636	1.447	1.582
No. of unique data	3907	4386	5854	6467
No. of parameters	214	214	320	320
No. of restraints	0	0	0	0
$R_1 (I > 2s(I))$	0.0300	0.0285	0.0368	0.0300
wR_2 (all data)	0.0922	0.0754	0.0789	0.0808
GOF	1.017	1.016	1.007	1.016

Computational details

Total Energy: -3988.47224046 hartree				
Ge	0	-1.463322	-0.000005	0.657094
S	0	0.684115	0.000011	-1.003483
Ν	0	-0.198593	-1.183552	-0.182914
С	0	2.293404	-0.000000	-0.181064
С	0	3.432270	0.000078	-0.987127
Н	0	3.339959	0.000145	-2.070541
С	0	4.789534	-0.000016	1.011340
Н	0	5.768419	-0.000022	1.482583
Ν	0	-0.198593	1.183557	-0.182890
С	0	2.375190	-0.000089	1.215314
Н	0	1.469573	-0.000153	1.816795
С	0	-0.323999	-2.580719	-0.669112
С	0	-1.245245	3.263414	0.359360
Н	0	-0.860460	3.118979	1.373088
Н	0	-2.259174	2.850760	0.324310
Н	0	-1.306841	4.335900	0.146214
С	0	1.056420	3.259939	-0.657448
Н	0	1.745174	2.787295	-1.368716
Н	0	1.506835	3.210628	0.338693
Н	0	0.960326	4.312581	-0.945595
С	0	-0.945374	2.638683	-2.075539
Н	0	-1.922520	2.149119	-2.086457
Н	0	-0.302222	2.137483	-2.809953
Н	0	-1.068473	3.678088	-2.400576
С	0	4.690931	0.000070	-0.380224
Н	0	5.587333	0.000131	-0.993467
С	0	-1.245236	-3.263425	0.359300
Н	0	-2.259174	-2.850796	0.324243
Н	0	-0.860462	-3.118983	1.373031
Н	0	-1.306804	-4.335912	0.146150
С	0	-0.324001	2.580733	-0.669062
С	0	1.056425	-3.259918	-0.657515
Н	0	1.506846	-3.210617	0.338623
Н	0	1.745172	-2.787262	-1.368782

Atomic Coordinates for *cis*-**3**.

Н	0	0.960335	-4.312557	-0.945675
С	0	-0.945377	-2.638646	-2.075588
Н	0	-0.302230	-2.137429	-2.809996
Н	0	-1.922525	-2.149087	-2.086494
Н	0	-1.068472	-3.678046	-2.400644
С	0	3.636052	-0.000096	1.805960
Н	0	3.721456	-0.000165	2.888709
Cl	0	-3.247633	0.000011	-0.717829
S	0	-1.800469	-0.000023	2.695960

Figure S25. Optimized geometry of *cis*-3 [B3LYP/6-31G(d) level].

Atomic Coordinates for *trans*-3.

Total Energy: -	-3988.474524	145 hartree
-----------------	--------------	-------------

Ge	0	-1.530449	0.000200	0.550988
S	0	0.699111	-0.000276	-0.971462
Ν	0	-0.187353	-1.197549	-0.164754
С	0	2.313449	-0.000382	-0.171427
С	0	3.434023	-0.000563	-1.004339
Н	0	3.316477	-0.000665	-2.085215
С	0	4.839161	-0.000495	0.960607
Н	0	5.829147	-0.000533	1.408158
Ν	0	-0.187203	1.197284	-0.165303
С	0	2.430457	-0.000239	1.222068
Н	0	1.541025	-0.000112	1.844582
С	0	-0.425438	-2.525777	-0.800201
С	0	-1.255725	3.308309	0.233761
Н	0	-0.744991	3.322775	1.201778
Н	0	-2.244945	2.860172	0.372572
Н	0	-1.393977	4.339618	-0.108276
С	0	0.922996	3.233880	-1.018002
Н	0	1.551933	2.694461	-1.737872
Н	0	1.475575	3.320724	-0.077034
Н	0	0.758840	4.239638	-1.420151
С	0	-1.192392	2.383894	-2.126563
Н	0	-2.115351	1.816741	-1.973078
Н	0	-0.583942	1.858343	-2.873861
Н	0	-1.443472	3.367266	-2.540074
С	0	4.706595	-0.000630	-0.428214
Η	0	5.587788	-0.000798	-1.063107
С	0	-1.257102	-3.307939	0.233796
Η	0	-2.245855	-2.858969	0.373337
Н	0	-0.745900	-3.323483	1.201532
Η	0	-1.396602	-4.338906	-0.108794
С	0	-0.424292	2.525881	-0.800286
С	0	0.921372	-3.234585	-1.018429
Η	0	1.474329	-3.321630	-0.077701
Н	0	1.550317	-2.695637	-1.738645
Н	0	0.756492	-4.240312	-1.420368
С	0	-1.193747	-2.382920	-2.126254

Н	0	-0 585141	-1 857461	-2.873490
Н	0	-2.116373	-1.815328	-1.972449
Н	0	-1.445395	-3.366034	-2.540039
С	0	3.705155	-0.000298	1.782081
Н	0	3.816245	-0.000195	2.862587
S	0	-3.517258	0.000564	-0.046645
Cl	0	-1.120982	0.000139	2.746030

Figure S26. Optimized geometry of *trans*-3 [B3LYP/6-31G(d) level].